mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-05 04:14:10 +00:00
58ff47de26
* feat(bark-cpp): add new bark.cpp backend Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * build on linux only for now Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * track bark.cpp in CI bumps Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Drop old entries from bumper Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * No need to test rwkv specifically, now part of llama.cpp Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
86 lines
2.4 KiB
C++
86 lines
2.4 KiB
C++
#include <iostream>
|
|
#include <tuple>
|
|
|
|
#include "bark.h"
|
|
#include "gobark.h"
|
|
#include "common.h"
|
|
#include "ggml.h"
|
|
|
|
struct bark_context *c;
|
|
|
|
void bark_print_progress_callback(struct bark_context *bctx, enum bark_encoding_step step, int progress, void *user_data) {
|
|
if (step == bark_encoding_step::SEMANTIC) {
|
|
printf("\rGenerating semantic tokens... %d%%", progress);
|
|
} else if (step == bark_encoding_step::COARSE) {
|
|
printf("\rGenerating coarse tokens... %d%%", progress);
|
|
} else if (step == bark_encoding_step::FINE) {
|
|
printf("\rGenerating fine tokens... %d%%", progress);
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
|
|
int load_model(char *model) {
|
|
// initialize bark context
|
|
struct bark_context_params ctx_params = bark_context_default_params();
|
|
bark_params params;
|
|
|
|
params.model_path = model;
|
|
|
|
// ctx_params.verbosity = verbosity;
|
|
ctx_params.progress_callback = bark_print_progress_callback;
|
|
ctx_params.progress_callback_user_data = nullptr;
|
|
|
|
struct bark_context *bctx = bark_load_model(params.model_path.c_str(), ctx_params, params.seed);
|
|
if (!bctx) {
|
|
fprintf(stderr, "%s: Could not load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
c = bctx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tts(char *text,int threads, char *dst ) {
|
|
|
|
ggml_time_init();
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
// generate audio
|
|
if (!bark_generate_audio(c, text, threads)) {
|
|
fprintf(stderr, "%s: An error occured. If the problem persists, feel free to open an issue to report it.\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const float *audio_data = bark_get_audio_data(c);
|
|
if (audio_data == NULL) {
|
|
fprintf(stderr, "%s: Could not get audio data\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const int audio_arr_size = bark_get_audio_data_size(c);
|
|
|
|
std::vector<float> audio_arr(audio_data, audio_data + audio_arr_size);
|
|
|
|
write_wav_on_disk(audio_arr, dst);
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
const int64_t t_load_us = bark_get_load_time(c);
|
|
const int64_t t_eval_us = bark_get_eval_time(c);
|
|
|
|
printf("\n\n");
|
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
|
|
printf("%s: eval time = %8.2f ms\n", __func__, t_eval_us / 1000.0f);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int unload() {
|
|
bark_free(c);
|
|
}
|
|
|