mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-25 21:59:27 +00:00
81ae92f017
* initial version of elevenlabs compatible soundgeneration api and cli command Signed-off-by: Dave Lee <dave@gray101.com> * minor cleanup Signed-off-by: Dave Lee <dave@gray101.com> * restore TTS, add test Signed-off-by: Dave Lee <dave@gray101.com> * remove stray s Signed-off-by: Dave Lee <dave@gray101.com> * fix Signed-off-by: Dave Lee <dave@gray101.com> --------- Signed-off-by: Dave Lee <dave@gray101.com> Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com> Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
177 lines
7.2 KiB
Python
177 lines
7.2 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Extra gRPC server for MusicgenForConditionalGeneration models.
|
|
"""
|
|
from concurrent import futures
|
|
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
|
|
import time
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
|
|
from scipy.io import wavfile
|
|
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
A gRPC servicer for the backend service.
|
|
|
|
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
|
"""
|
|
def Health(self, request, context):
|
|
"""
|
|
A gRPC method that returns the health status of the backend service.
|
|
|
|
Args:
|
|
request: A HealthRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
A Reply object that contains the health status of the backend service.
|
|
"""
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
"""
|
|
A gRPC method that loads a model into memory.
|
|
|
|
Args:
|
|
request: A LoadModelRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
A Result object that contains the result of the LoadModel operation.
|
|
"""
|
|
model_name = request.Model
|
|
try:
|
|
self.processor = AutoProcessor.from_pretrained(model_name)
|
|
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def SoundGeneration(self, request, context):
|
|
model_name = request.model
|
|
if model_name == "":
|
|
return backend_pb2.Result(success=False, message="request.model is required")
|
|
try:
|
|
self.processor = AutoProcessor.from_pretrained(model_name)
|
|
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
|
inputs = None
|
|
if request.text == "":
|
|
inputs = self.model.get_unconditional_inputs(num_samples=1)
|
|
elif request.HasField('src'):
|
|
# TODO SECURITY CODE GOES HERE LOL
|
|
# WHO KNOWS IF THIS WORKS???
|
|
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
|
|
|
|
if request.HasField('src_divisor'):
|
|
wsamples = wsamples[: len(wsamples) // request.src_divisor]
|
|
|
|
inputs = self.processor(
|
|
audio=wsamples,
|
|
sampling_rate=sample_rate,
|
|
text=[request.text],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
else:
|
|
inputs = self.processor(
|
|
text=[request.text],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
tokens = 256
|
|
if request.HasField('duration'):
|
|
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
|
|
guidance = 3.0
|
|
if request.HasField('temperature'):
|
|
guidance = request.temperature
|
|
dosample = True
|
|
if request.HasField('sample'):
|
|
dosample = request.sample
|
|
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
|
|
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
|
|
sampling_rate = self.model.config.audio_encoder.sampling_rate
|
|
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
|
|
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
|
|
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
|
|
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
|
|
print(request, file=sys.stderr)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(success=True)
|
|
|
|
|
|
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
|
|
def TTS(self, request, context):
|
|
model_name = request.model
|
|
if model_name == "":
|
|
return backend_pb2.Result(success=False, message="request.model is required")
|
|
try:
|
|
self.processor = AutoProcessor.from_pretrained(model_name)
|
|
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
|
inputs = self.processor(
|
|
text=[request.text],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
|
|
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
|
|
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
|
|
sampling_rate = self.model.config.audio_encoder.sampling_rate
|
|
write_wav(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
|
|
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
|
|
print("[transformers-musicgen] TTS for", file=sys.stderr)
|
|
print(request, file=sys.stderr)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(success=True)
|
|
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("[transformers-musicgen] Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("[transformers-musicgen] Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
print(f"[transformers-musicgen] startup: {args}", file=sys.stderr)
|
|
serve(args.addr)
|