mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-18 18:57:06 +00:00
9dddd1134d
* Fix python header comments for some extra gRPC backends When a Python script is to be executed directly via exec(3), either the platform knows how to execute the file itself (i.e. special configuration is necessary) or the first line contains a shebang (#!) specifying the interpreter to run it (similar to shell scripts). The shebang MUST be on the first line for the script to work on all platforms, so any header comments need to be in the lines following it. Otherwise executing these scripts as extra backends will yield an "exec format error" message. Changes: * Move introductory comments below the shebang line * Change header comment in transformers.py to refer to the correct python module Signed-off-by: Marcus Köhler <khler.marcus@gmail.com> * Make header comment in ttsbark.py more specific Signed-off-by: Marcus Köhler <khler.marcus@gmail.com> --------- Signed-off-by: Marcus Köhler <khler.marcus@gmail.com>
94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
This is an extra gRPC server of LocalAI for Bark TTS
|
|
"""
|
|
from concurrent import futures
|
|
import time
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
from scipy.io.wavfile import write as write_wav
|
|
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
from bark import SAMPLE_RATE, generate_audio, preload_models
|
|
|
|
import grpc
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
BackendServicer is the class that implements the gRPC service
|
|
"""
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
def LoadModel(self, request, context):
|
|
model_name = request.Model
|
|
try:
|
|
print("Preparing models, please wait", file=sys.stderr)
|
|
# download and load all models
|
|
preload_models()
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
# Implement your logic here for the LoadModel service
|
|
# Replace this with your desired response
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def TTS(self, request, context):
|
|
model = request.model
|
|
print(request, file=sys.stderr)
|
|
try:
|
|
audio_array = None
|
|
if model != "":
|
|
audio_array = generate_audio(request.text, history_prompt=model)
|
|
else:
|
|
audio_array = generate_audio(request.text)
|
|
print("saving to", request.dst, file=sys.stderr)
|
|
# save audio to disk
|
|
write_wav(request.dst, SAMPLE_RATE, audio_array)
|
|
print("saved to", request.dst, file=sys.stderr)
|
|
print("tts for", file=sys.stderr)
|
|
print(request, file=sys.stderr)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(success=True)
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr)
|