LocalAI/pkg/grpc/llm/falcon/falcon.go
Ettore Di Giacinto 58f6aab637 feat: move llama to a grpc
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-07-15 01:19:43 +02:00

141 lines
4.2 KiB
Go

package falcon
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
ggllm "github.com/mudler/go-ggllm.cpp"
)
type LLM struct {
falcon *ggllm.Falcon
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
ggllmOpts := []ggllm.ModelOption{}
if opts.ContextSize != 0 {
ggllmOpts = append(ggllmOpts, ggllm.SetContext(int(opts.ContextSize)))
}
// F16 doesn't seem to produce good output at all!
//if c.F16 {
// llamaOpts = append(llamaOpts, llama.EnableF16Memory)
//}
if opts.NGPULayers != 0 {
ggllmOpts = append(ggllmOpts, ggllm.SetGPULayers(int(opts.NGPULayers)))
}
ggllmOpts = append(ggllmOpts, ggllm.SetMMap(opts.MMap))
ggllmOpts = append(ggllmOpts, ggllm.SetMainGPU(opts.MainGPU))
ggllmOpts = append(ggllmOpts, ggllm.SetTensorSplit(opts.TensorSplit))
if opts.NBatch != 0 {
ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(int(opts.NBatch)))
} else {
ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(512))
}
model, err := ggllm.New(opts.Model, ggllmOpts...)
llm.falcon = model
return err
}
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
return nil, fmt.Errorf("not implemented")
}
func buildPredictOptions(opts *pb.PredictOptions) []ggllm.PredictOption {
predictOptions := []ggllm.PredictOption{
ggllm.SetTemperature(float64(opts.Temperature)),
ggllm.SetTopP(float64(opts.TopP)),
ggllm.SetTopK(int(opts.TopK)),
ggllm.SetTokens(int(opts.Tokens)),
ggllm.SetThreads(int(opts.Threads)),
}
if opts.PromptCacheAll {
predictOptions = append(predictOptions, ggllm.EnablePromptCacheAll)
}
if opts.PromptCacheRO {
predictOptions = append(predictOptions, ggllm.EnablePromptCacheRO)
}
// Expected absolute path
if opts.PromptCachePath != "" {
predictOptions = append(predictOptions, ggllm.SetPathPromptCache(opts.PromptCachePath))
}
if opts.Mirostat != 0 {
predictOptions = append(predictOptions, ggllm.SetMirostat(int(opts.Mirostat)))
}
if opts.MirostatETA != 0 {
predictOptions = append(predictOptions, ggllm.SetMirostatETA(float64(opts.MirostatETA)))
}
if opts.MirostatTAU != 0 {
predictOptions = append(predictOptions, ggllm.SetMirostatTAU(float64(opts.MirostatTAU)))
}
if opts.Debug {
predictOptions = append(predictOptions, ggllm.Debug)
}
predictOptions = append(predictOptions, ggllm.SetStopWords(opts.StopPrompts...))
if opts.PresencePenalty != 0 {
predictOptions = append(predictOptions, ggllm.SetPenalty(float64(opts.PresencePenalty)))
}
if opts.NKeep != 0 {
predictOptions = append(predictOptions, ggllm.SetNKeep(int(opts.NKeep)))
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, ggllm.SetBatch(int(opts.Batch)))
}
if opts.IgnoreEOS {
predictOptions = append(predictOptions, ggllm.IgnoreEOS)
}
if opts.Seed != 0 {
predictOptions = append(predictOptions, ggllm.SetSeed(int(opts.Seed)))
}
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
predictOptions = append(predictOptions, ggllm.SetFrequencyPenalty(float64(opts.FrequencyPenalty)))
predictOptions = append(predictOptions, ggllm.SetMlock(opts.MLock))
predictOptions = append(predictOptions, ggllm.SetMemoryMap(opts.MMap))
predictOptions = append(predictOptions, ggllm.SetPredictionMainGPU(opts.MainGPU))
predictOptions = append(predictOptions, ggllm.SetPredictionTensorSplit(opts.TensorSplit))
predictOptions = append(predictOptions, ggllm.SetTailFreeSamplingZ(float64(opts.TailFreeSamplingZ)))
predictOptions = append(predictOptions, ggllm.SetTypicalP(float64(opts.TypicalP)))
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) {
predictOptions := buildPredictOptions(opts)
predictOptions = append(predictOptions, ggllm.SetTokenCallback(func(token string) bool {
results <- token
return true
}))
go func() {
_, err := llm.falcon.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
close(results)
}()
}