mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-20 19:49:33 +00:00
b2772509b4
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
49 lines
1.9 KiB
YAML
49 lines
1.9 KiB
YAML
name: llama3-8b-instruct
|
|
mmap: true
|
|
parameters:
|
|
model: huggingface://second-state/Llama-3-8B-Instruct-GGUF/Meta-Llama-3-8B-Instruct-Q5_K_M.gguf
|
|
|
|
template:
|
|
chat_message: |
|
|
<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
|
|
|
|
{{ if .FunctionCall -}}
|
|
Function call:
|
|
{{ else if eq .RoleName "tool" -}}
|
|
Function response:
|
|
{{ end -}}
|
|
{{ if .Content -}}
|
|
{{.Content -}}
|
|
{{ else if .FunctionCall -}}
|
|
{{ toJson .FunctionCall -}}
|
|
{{ end -}}
|
|
<|eot_id|>
|
|
function: |
|
|
<|start_header_id|>system<|end_header_id|>
|
|
|
|
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
|
|
<tools>
|
|
{{range .Functions}}
|
|
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
|
|
{{end}}
|
|
</tools>
|
|
Use the following pydantic model json schema for each tool call you will make:
|
|
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
|
Function call:
|
|
chat: |
|
|
<|begin_of_text|>{{.Input }}
|
|
<|start_header_id|>assistant<|end_header_id|>
|
|
completion: |
|
|
{{.Input}}
|
|
context_size: 8192
|
|
f16: true
|
|
stopwords:
|
|
- <|im_end|>
|
|
- <dummy32000>
|
|
- "<|eot_id|>"
|
|
usage: |
|
|
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
|
"model": "llama3-8b-instruct",
|
|
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
|
|
}'
|