LocalAI/core/backend/llm.go
Ettore Di Giacinto b17b42ce8a aujdio
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-12-23 16:00:23 +01:00

223 lines
5.9 KiB
Go

package backend
import (
"context"
"encoding/json"
"fmt"
"os"
"regexp"
"strings"
"sync"
"unicode/utf8"
"github.com/rs/zerolog/log"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/gallery"
"github.com/mudler/LocalAI/pkg/grpc/proto"
model "github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/utils"
)
type LLMResponse struct {
Response string // should this be []byte?
Usage TokenUsage
AudioOutput string
}
type TokenUsage struct {
Prompt int
Completion int
}
func ModelInference(ctx context.Context, s string, messages []schema.Message, images, videos, audios []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
// Check if the modelFile exists, if it doesn't try to load it from the gallery
if o.AutoloadGalleries { // experimental
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
utils.ResetDownloadTimers()
// if we failed to load the model, we try to download it
err := gallery.InstallModelFromGallery(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction, o.EnforcePredownloadScans)
if err != nil {
return nil, err
}
}
}
opts := ModelOptions(c, o)
inferenceModel, err := loader.Load(opts...)
if err != nil {
return nil, err
}
var protoMessages []*proto.Message
// if we are using the tokenizer template, we need to convert the messages to proto messages
// unless the prompt has already been tokenized (non-chat endpoints + functions)
if c.TemplateConfig.UseTokenizerTemplate && s == "" {
protoMessages = make([]*proto.Message, len(messages), len(messages))
for i, message := range messages {
protoMessages[i] = &proto.Message{
Role: message.Role,
}
switch ct := message.Content.(type) {
case string:
protoMessages[i].Content = ct
case []interface{}:
// If using the tokenizer template, in case of multimodal we want to keep the multimodal content as and return only strings here
data, _ := json.Marshal(ct)
resultData := []struct {
Text string `json:"text"`
}{}
json.Unmarshal(data, &resultData)
for _, r := range resultData {
protoMessages[i].Content += r.Text
}
default:
return nil, fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
}
}
}
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (LLMResponse, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
opts.Messages = protoMessages
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
opts.Images = images
opts.Videos = videos
opts.Audios = audios
tokenUsage := TokenUsage{}
// check the per-model feature flag for usage, since tokenCallback may have a cost.
// Defaults to off as for now it is still experimental
if c.FeatureFlag.Enabled("usage") {
userTokenCallback := tokenCallback
if userTokenCallback == nil {
userTokenCallback = func(token string, usage TokenUsage) bool {
return true
}
}
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
if pErr == nil && promptInfo.Length > 0 {
tokenUsage.Prompt = int(promptInfo.Length)
}
tokenCallback = func(token string, usage TokenUsage) bool {
tokenUsage.Completion++
return userTokenCallback(token, tokenUsage)
}
}
if tokenCallback != nil {
ss := ""
var partialRune []byte
err := inferenceModel.PredictStream(ctx, opts, func(reply *proto.Reply) {
msg := reply.Message
partialRune = append(partialRune, msg...)
tokenUsage.Prompt = int(reply.PromptTokens)
tokenUsage.Completion = int(reply.Tokens)
for len(partialRune) > 0 {
r, size := utf8.DecodeRune(partialRune)
if r == utf8.RuneError {
// incomplete rune, wait for more bytes
break
}
tokenCallback(string(r), tokenUsage)
ss += string(r)
partialRune = partialRune[size:]
}
if len(msg) == 0 {
tokenCallback("", tokenUsage)
}
})
return LLMResponse{
Response: ss,
Usage: tokenUsage,
}, err
} else {
// TODO: Is the chicken bit the only way to get here? is that acceptable?
reply, err := inferenceModel.Predict(ctx, opts)
if err != nil {
return LLMResponse{}, err
}
if tokenUsage.Prompt == 0 {
tokenUsage.Prompt = int(reply.PromptTokens)
}
if tokenUsage.Completion == 0 {
tokenUsage.Completion = int(reply.Tokens)
}
return LLMResponse{
Response: string(reply.Message),
Usage: tokenUsage,
}, err
}
}
return fn, nil
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config config.BackendConfig, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
r, err := regexp.Compile(c)
if err != nil {
log.Fatal().Err(err).Msg("failed to compile regex")
}
cutstrings[c] = r
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
// extract results from the response which can be for instance inside XML tags
var predResult string
for _, r := range config.ExtractRegex {
mu.Lock()
reg, ok := cutstrings[r]
if !ok {
regex, err := regexp.Compile(r)
if err != nil {
log.Fatal().Err(err).Msg("failed to compile regex")
}
cutstrings[r] = regex
reg = regex
}
mu.Unlock()
predResult += reg.FindString(prediction)
}
if predResult != "" {
prediction = predResult
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
for _, c := range config.TrimSuffix {
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
}
return prediction
}