LocalAI/extra/grpc/diffusers/backend_diffusers.py
2023-08-16 01:11:42 +02:00

172 lines
7.3 KiB
Python
Executable File

#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os
# import diffusers
import torch
from torch import autocast
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers.pipelines.stable_diffusion import safety_checker
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
def sc(self, clip_input, images) : return images, [False for i in images]
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
safety_checker.StableDiffusionSafetyChecker.forward = sc
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
if request.F16Memory:
torchType = torch.float16
local = False
modelFile = request.Model
cfg_scale = 7
if request.CFGScale != 0:
cfg_scale = request.CFGScale
# Check if ModelFile exists
if request.ModelFile != "":
if os.path.exists(request.ModelFile):
local = True
modelFile = request.ModelFile
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
# If request.Model is a URL, use from_single_file
if request.PipelineType == "":
request.PipelineType == "StableDiffusionPipeline"
if request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType,
guidance_scale=cfg_scale)
else:
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "DiffusionPipeline":
if fromSingleFile:
self.pipe = DiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType,
guidance_scale=cfg_scale)
else:
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType, use_safetensors=True,
guidance_scale=cfg_scale)
else:
self.pipe = StableDiffusionXLPipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
# variant="fp16"
guidance_scale=cfg_scale)
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType == "EulerAncestralDiscreteScheduler":
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
if request.SchedulerType == "DPMSolverMultistepScheduler":
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
if request.SchedulerType == "DPMSolverMultistepScheduler++":
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config,algorithm_type="dpmsolver++")
if request.SchedulerType == "DPMSolverMultistepSchedulerSDE++":
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config, algorithm_type="sde-dpmsolver++")
if request.CUDA:
self.pipe.to('cuda')
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def GenerateImage(self, request, context):
prompt = request.positive_prompt
# create a dictionary of values for the parameters
options = {
"negative_prompt": request.negative_prompt,
"width": request.width,
"height": request.height,
"num_inference_steps": request.step
}
# Get the keys that we will build the args for our pipe for
keys = options.keys()
if request.EnableParameters != "":
keys = request.EnableParameters.split(",")
if request.EnableParameters == "none":
keys = []
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
kwargs = {key: options[key] for key in keys}
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
prompt,
**kwargs
).images[0]
# save the result
image.save(request.dst)
return backend_pb2.Result(message="Model loaded successfully", success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)