mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-29 17:08:52 +00:00
83 lines
2.8 KiB
Python
83 lines
2.8 KiB
Python
import os
|
|
|
|
import weaviate
|
|
from llama_index.storage.storage_context import StorageContext
|
|
from llama_index.vector_stores import WeaviateVectorStore
|
|
|
|
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
|
|
from llama_index.callbacks.base import CallbackManager
|
|
from llama_index import (
|
|
LLMPredictor,
|
|
ServiceContext,
|
|
StorageContext,
|
|
VectorStoreIndex,
|
|
)
|
|
import chainlit as cl
|
|
|
|
from llama_index.llms import LocalAI
|
|
from llama_index.embeddings import HuggingFaceEmbedding
|
|
import yaml
|
|
|
|
# Load the configuration file
|
|
with open("config.yaml", "r") as ymlfile:
|
|
cfg = yaml.safe_load(ymlfile)
|
|
|
|
# Get the values from the configuration file or set the default values
|
|
temperature = cfg['localAI'].get('temperature', 0)
|
|
model_name = cfg['localAI'].get('modelName', "gpt-3.5-turbo")
|
|
api_base = cfg['localAI'].get('apiBase', "http://local-ai.default")
|
|
api_key = cfg['localAI'].get('apiKey', "stub")
|
|
streaming = cfg['localAI'].get('streaming', True)
|
|
weaviate_url = cfg['weviate'].get('url', "http://weviate.default")
|
|
index_name = cfg['weviate'].get('index', "AIChroma")
|
|
query_mode = cfg['query'].get('mode', "hybrid")
|
|
topK = cfg['query'].get('topK', 1)
|
|
alpha = cfg['query'].get('alpha', 0.0)
|
|
embed_model_name = cfg['embedding'].get('model', "BAAI/bge-small-en-v1.5")
|
|
chunk_size = cfg['query'].get('chunkSize', 1024)
|
|
|
|
|
|
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
|
|
|
|
|
llm = LocalAI(temperature=temperature, model_name=model_name, api_base=api_base, api_key=api_key, streaming=streaming)
|
|
llm.globally_use_chat_completions = True;
|
|
client = weaviate.Client(weaviate_url)
|
|
vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
|
|
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
|
|
|
@cl.on_chat_start
|
|
async def factory():
|
|
|
|
llm_predictor = LLMPredictor(
|
|
llm=llm
|
|
)
|
|
|
|
service_context = ServiceContext.from_defaults(embed_model=embed_model, callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]), llm_predictor=llm_predictor, chunk_size=chunk_size)
|
|
|
|
index = VectorStoreIndex.from_vector_store(
|
|
vector_store,
|
|
storage_context=storage_context,
|
|
service_context=service_context
|
|
)
|
|
|
|
query_engine = index.as_query_engine(vector_store_query_mode=query_mode, similarity_top_k=topK, alpha=alpha, streaming=True)
|
|
|
|
cl.user_session.set("query_engine", query_engine)
|
|
|
|
|
|
@cl.on_message
|
|
async def main(message: cl.Message):
|
|
query_engine = cl.user_session.get("query_engine")
|
|
response = await cl.make_async(query_engine.query)(message.content)
|
|
|
|
response_message = cl.Message(content="")
|
|
|
|
for token in response.response_gen:
|
|
await response_message.stream_token(token=token)
|
|
|
|
if response.response_txt:
|
|
response_message.content = response.response_txt
|
|
|
|
await response_message.send()
|