mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-22 04:18:36 +00:00
577d36b596
Signed-off-by: mudler <mudler@mocaccino.org> |
||
---|---|---|
.. | ||
models | ||
scripts | ||
.gitignore | ||
docker-compose.yaml | ||
Dockerfile.build | ||
README.md |
rwkv
Example of how to run rwkv models.
Run models
Setup:
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/rwkv
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# build the tooling image to convert an rwkv model locally:
docker build -t rwkv-converter -f Dockerfile.build .
# download and convert a model (one-off) - it's going to be fast on CPU too!
docker run -ti --name converter -v $PWD:/data rwkv-converter https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%25-Other1%25-20230425-ctx4096.pth /data/models/rwkv
# Get the tokenizer
wget https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O models/rwkv.tokenizer.json
# start with docker-compose
docker-compose up -d --build
Test it out:
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"prompt": "A long time ago, in a galaxy far away",
"max_tokens": 100,
"temperature": 0.9, "top_p": 0.8, "top_k": 80
}'
# {"object":"text_completion","model":"gpt-3.5-turbo","choices":[{"text":", there was a small group of five friends: Annie, Bryan, Charlie, Emily, and Jesse."}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "How are you?"}],
"temperature": 0.9, "top_p": 0.8, "top_k": 80
}'
# {"object":"chat.completion","model":"gpt-3.5-turbo","choices":[{"message":{"role":"assistant","content":" Good, thanks. I am about to go to bed. I' ll talk to you later.Bye."}}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}
Fine tuning
See RWKV-LM. There is also a Google colab.