LocalAI/backend/python/vllm/backend.py
Ettore Di Giacinto 2553de0187
feat(vllm): add support for image-to-text and video-to-text (#3729)
* feat(vllm): add support for image-to-text

Related to https://github.com/mudler/LocalAI/issues/3670

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(vllm): add support for video-to-text

Closes: https://github.com/mudler/LocalAI/issues/2318

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(vllm): support CPU installations

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(vllm): add bnb

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore: add docs reference

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Apply suggestions from code review

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-10-04 23:42:05 +02:00

324 lines
12 KiB
Python

#!/usr/bin/env python3
import asyncio
from concurrent import futures
import argparse
import signal
import sys
import os
from typing import List
from PIL import Image
import backend_pb2
import backend_pb2_grpc
import grpc
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.multimodal.utils import fetch_image
from vllm.assets.video import VideoAsset
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer that implements the Backend service defined in backend.proto.
"""
def generate(self,prompt, max_new_tokens):
"""
Generates text based on the given prompt and maximum number of new tokens.
Args:
prompt (str): The prompt to generate text from.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated text.
"""
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt)
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
decoded_text = ''
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
if token.item() == self.generator.tokenizer.eos_token_id:
break
return decoded_text
def Health(self, request, context):
"""
Returns a health check message.
Args:
request: The health check request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The health check reply.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
async def LoadModel(self, request, context):
"""
Loads a language model.
Args:
request: The load model request.
context: The gRPC context.
Returns:
backend_pb2.Result: The load model result.
"""
engine_args = AsyncEngineArgs(
model=request.Model,
)
if request.Quantization != "":
engine_args.quantization = request.Quantization
if request.GPUMemoryUtilization != 0:
engine_args.gpu_memory_utilization = request.GPUMemoryUtilization
if request.TrustRemoteCode:
engine_args.trust_remote_code = request.TrustRemoteCode
if request.EnforceEager:
engine_args.enforce_eager = request.EnforceEager
if request.TensorParallelSize:
engine_args.tensor_parallel_size = request.TensorParallelSize
if request.SwapSpace != 0:
engine_args.swap_space = request.SwapSpace
if request.MaxModelLen != 0:
engine_args.max_model_len = request.MaxModelLen
try:
self.llm = AsyncLLMEngine.from_engine_args(engine_args)
except Exception as err:
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
try:
engine_model_config = await self.llm.get_model_config()
self.tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code,
truncation_side="left",
)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
print("Model loaded successfully", file=sys.stderr)
return backend_pb2.Result(message="Model loaded successfully", success=True)
async def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The predict result.
"""
gen = self._predict(request, context, streaming=False)
res = await gen.__anext__()
return res
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
outputs = self.model.encode(request.Embeddings)
# Check if we have one result at least
if len(outputs) == 0:
context.set_code(grpc.StatusCode.INVALID_ARGUMENT)
context.set_details("No embeddings were calculated.")
return backend_pb2.EmbeddingResult()
return backend_pb2.EmbeddingResult(embeddings=outputs[0].outputs.embedding)
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
Args:
request: The predict stream request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict stream result.
"""
iterations = self._predict(request, context, streaming=True)
try:
async for iteration in iterations:
yield iteration
finally:
await iterations.aclose()
async def _predict(self, request, context, streaming=False):
# Build sampling parameters
sampling_params = SamplingParams(top_p=0.9, max_tokens=200)
if request.TopP != 0:
sampling_params.top_p = request.TopP
if request.Tokens > 0:
sampling_params.max_tokens = request.Tokens
if request.Temperature != 0:
sampling_params.temperature = request.Temperature
if request.TopK != 0:
sampling_params.top_k = request.TopK
if request.PresencePenalty != 0:
sampling_params.presence_penalty = request.PresencePenalty
if request.FrequencyPenalty != 0:
sampling_params.frequency_penalty = request.FrequencyPenalty
if request.StopPrompts:
sampling_params.stop = request.StopPrompts
if request.IgnoreEOS:
sampling_params.ignore_eos = request.IgnoreEOS
if request.Seed != 0:
sampling_params.seed = request.Seed
# Extract image paths and process images
prompt = request.Prompt
image_paths = request.Images
image_data = [self.load_image(img_path) for img_path in image_paths]
videos_path = request.Videos
video_data = [self.load_video(video_path) for video_path in videos_path]
# If tokenizer template is enabled and messages are provided instead of prompt, apply the tokenizer template
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
# Generate text using the LLM engine
request_id = random_uuid()
print(f"Generating text with request_id: {request_id}", file=sys.stderr)
outputs = self.llm.generate(
{
"prompt": prompt,
"multi_modal_data": {
"image": image_data if image_data else None,
"video": video_data if video_data else None,
} if image_data or video_data else None,
},
sampling_params=sampling_params,
request_id=request_id,
)
# Stream the results
generated_text = ""
try:
async for request_output in outputs:
iteration_text = request_output.outputs[0].text
if streaming:
# Remove text already sent as vllm concatenates the text from previous yields
delta_iteration_text = iteration_text.removeprefix(generated_text)
# Send the partial result
yield backend_pb2.Reply(message=bytes(delta_iteration_text, encoding='utf-8'))
# Keep track of text generated
generated_text = iteration_text
finally:
await outputs.aclose()
# If streaming, we already sent everything
if streaming:
return
# Remove the image files from /tmp folder
for img_path in image_paths:
try:
os.remove(img_path)
except Exception as e:
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr)
# Sending the final generated text
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
def load_image(self, image_path: str):
"""
Load an image from the given file path.
Args:
image_path (str): The path to the image file.
Returns:
Image: The loaded image.
"""
try:
return Image.open(image_path)
except Exception as e:
print(f"Error loading image {image_path}: {e}", file=sys.stderr)
return self.load_video(image_path)
def load_video(self, video_path: str):
"""
Load a video from the given file path.
Args:
video_path (str): The path to the image file.
Returns:
Video: The loaded video.
"""
try:
video = VideoAsset(name=video_path).np_ndarrays
return video
except Exception as e:
print(f"Error loading video {image_path}: {e}", file=sys.stderr)
return None
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
# Add the servicer to the server
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
# Bind the server to the address
server.add_insecure_port(address)
# Gracefully shutdown the server on SIGTERM or SIGINT
loop = asyncio.get_event_loop()
for sig in (signal.SIGINT, signal.SIGTERM):
loop.add_signal_handler(
sig, lambda: asyncio.ensure_future(server.stop(5))
)
# Start the server
await server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Wait for the server to be terminated
await server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
asyncio.run(serve(args.addr))