mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-01 02:16:40 +00:00
85a3cc8d8f
* signing commit Signed-off-by: Josh Bennett <562773+joshbtn@users.noreply.github.com> * Update transformers backend to check for existing model directory Signed-off-by: Josh Bennett <562773+joshbtn@users.noreply.github.com> --------- Signed-off-by: Josh Bennett <562773+joshbtn@users.noreply.github.com>
412 lines
17 KiB
Python
412 lines
17 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Extra gRPC server for HuggingFace AutoModel models.
|
|
"""
|
|
from concurrent import futures
|
|
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
from threading import Thread
|
|
import asyncio
|
|
|
|
import time
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
import torch
|
|
import torch.cuda
|
|
|
|
|
|
XPU=os.environ.get("XPU", "0") == "1"
|
|
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
|
|
def mean_pooling(model_output, attention_mask):
|
|
"""
|
|
Mean pooling to get sentence embeddings. See:
|
|
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
|
|
"""
|
|
token_embeddings = model_output[0]
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Sum columns
|
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
return sum_embeddings / sum_mask
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
A gRPC servicer for the backend service.
|
|
|
|
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
|
"""
|
|
def Health(self, request, context):
|
|
"""
|
|
A gRPC method that returns the health status of the backend service.
|
|
|
|
Args:
|
|
request: A HealthRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
A Reply object that contains the health status of the backend service.
|
|
"""
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
"""
|
|
A gRPC method that loads a model into memory.
|
|
|
|
Args:
|
|
request: A LoadModelRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
A Result object that contains the result of the LoadModel operation.
|
|
"""
|
|
|
|
model_name = request.Model
|
|
|
|
# Check to see if the Model exists in the filesystem already.
|
|
if os.path.exists(request.ModelFile):
|
|
model_name = request.ModelFile
|
|
|
|
compute = torch.float16
|
|
if request.F16Memory == True:
|
|
compute=torch.bfloat16
|
|
|
|
self.CUDA = torch.cuda.is_available()
|
|
self.OV=False
|
|
|
|
device_map="cpu"
|
|
|
|
quantization = None
|
|
|
|
if self.CUDA:
|
|
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
|
|
if request.MainGPU:
|
|
device_map=request.MainGPU
|
|
else:
|
|
device_map="cuda:0"
|
|
if request.Quantization == "bnb_4bit":
|
|
quantization = BitsAndBytesConfig(
|
|
load_in_4bit = True,
|
|
bnb_4bit_compute_dtype = compute,
|
|
bnb_4bit_quant_type = "nf4",
|
|
bnb_4bit_use_double_quant = True,
|
|
load_in_8bit = False,
|
|
)
|
|
elif request.Quantization == "bnb_8bit":
|
|
quantization = BitsAndBytesConfig(
|
|
load_in_4bit=False,
|
|
bnb_4bit_compute_dtype = None,
|
|
load_in_8bit=True,
|
|
)
|
|
|
|
try:
|
|
if request.Type == "AutoModelForCausalLM":
|
|
if XPU:
|
|
import intel_extension_for_pytorch as ipex
|
|
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
|
|
|
device_map="xpu"
|
|
compute=torch.float16
|
|
if request.Quantization == "xpu_4bit":
|
|
xpu_4bit = True
|
|
xpu_8bit = False
|
|
elif request.Quantization == "xpu_8bit":
|
|
xpu_4bit = False
|
|
xpu_8bit = True
|
|
else:
|
|
xpu_4bit = False
|
|
xpu_8bit = False
|
|
self.model = AutoModelForCausalLM.from_pretrained(model_name,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
use_safetensors=True,
|
|
device_map=device_map,
|
|
load_in_4bit=xpu_4bit,
|
|
load_in_8bit=xpu_8bit,
|
|
torch_dtype=compute)
|
|
else:
|
|
self.model = AutoModelForCausalLM.from_pretrained(model_name,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
use_safetensors=True,
|
|
quantization_config=quantization,
|
|
device_map=device_map,
|
|
torch_dtype=compute)
|
|
elif request.Type == "OVModelForCausalLM":
|
|
from optimum.intel.openvino import OVModelForCausalLM
|
|
from openvino.runtime import Core
|
|
|
|
if request.MainGPU:
|
|
device_map=request.MainGPU
|
|
else:
|
|
device_map="AUTO"
|
|
devices = Core().available_devices
|
|
if "GPU" in " ".join(devices):
|
|
device_map="AUTO:GPU"
|
|
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
|
|
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
|
|
if "CPU" or "NPU" in device_map:
|
|
if "-CPU" or "-NPU" not in device_map:
|
|
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
|
|
else:
|
|
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
|
|
self.model = OVModelForCausalLM.from_pretrained(model_name,
|
|
compile=True,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
ov_config=ovconfig,
|
|
device=device_map)
|
|
self.OV = True
|
|
elif request.Type == "OVModelForFeatureExtraction":
|
|
from optimum.intel.openvino import OVModelForFeatureExtraction
|
|
from openvino.runtime import Core
|
|
|
|
if request.MainGPU:
|
|
device_map=request.MainGPU
|
|
else:
|
|
device_map="AUTO"
|
|
devices = Core().available_devices
|
|
if "GPU" in " ".join(devices):
|
|
device_map="AUTO:GPU"
|
|
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
|
|
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
|
|
if "CPU" or "NPU" in device_map:
|
|
if "-CPU" or "-NPU" not in device_map:
|
|
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
|
|
else:
|
|
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
|
|
self.model = OVModelForFeatureExtraction.from_pretrained(model_name,
|
|
compile=True,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
ov_config=ovconfig,
|
|
export=True,
|
|
device=device_map)
|
|
self.OV = True
|
|
else:
|
|
print("Automodel", file=sys.stderr)
|
|
self.model = AutoModel.from_pretrained(model_name,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
use_safetensors=True,
|
|
quantization_config=quantization,
|
|
device_map=device_map,
|
|
torch_dtype=compute)
|
|
if request.ContextSize > 0:
|
|
self.max_tokens = request.ContextSize
|
|
else:
|
|
self.max_tokens = self.model.config.max_position_embeddings
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
|
|
self.XPU = False
|
|
|
|
if XPU and self.OV == False:
|
|
self.XPU = True
|
|
try:
|
|
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
|
|
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
|
|
except Exception as err:
|
|
print("Not using XPU:", err, file=sys.stderr)
|
|
|
|
except Exception as err:
|
|
print("Error:", err, file=sys.stderr)
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
# Implement your logic here for the LoadModel service
|
|
# Replace this with your desired response
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def Embedding(self, request, context):
|
|
"""
|
|
A gRPC method that calculates embeddings for a given sentence.
|
|
|
|
Args:
|
|
request: An EmbeddingRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
An EmbeddingResult object that contains the calculated embeddings.
|
|
"""
|
|
|
|
set_seed(request.Seed)
|
|
# Tokenize input
|
|
max_length = 512
|
|
if request.Tokens != 0:
|
|
max_length = request.Tokens
|
|
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
|
|
|
# Create word embeddings
|
|
if self.CUDA:
|
|
encoded_input = encoded_input.to("cuda")
|
|
|
|
with torch.no_grad():
|
|
model_output = self.model(**encoded_input)
|
|
|
|
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
|
|
|
|
async def _predict(self, request, context, streaming=False):
|
|
set_seed(request.Seed)
|
|
if request.TopP < 0 or request.TopP > 1:
|
|
request.TopP = 1
|
|
|
|
if request.TopK <= 0:
|
|
request.TopK = 50
|
|
|
|
if request.Temperature > 0 :
|
|
sample=True
|
|
else:
|
|
sample=False
|
|
request.TopP == None
|
|
request.TopK == None
|
|
request.Temperature == None
|
|
|
|
prompt = request.Prompt
|
|
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
|
|
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
|
|
if request.Tokens > 0:
|
|
max_tokens = request.Tokens
|
|
else:
|
|
max_tokens = self.max_tokens - inputs["input_ids"].size()[inputs["input_ids"].dim()-1]
|
|
|
|
if self.CUDA:
|
|
inputs = inputs.to("cuda")
|
|
if XPU and self.OV == False:
|
|
inputs = inputs.to("xpu")
|
|
streaming = False
|
|
|
|
criteria=[]
|
|
if request.StopPrompts:
|
|
criteria = StoppingCriteriaList(
|
|
[
|
|
StopStringCriteria(tokenizer=self.tokenizer, stop_strings=request.StopPrompts),
|
|
]
|
|
)
|
|
|
|
if streaming:
|
|
streamer=TextIteratorStreamer(self.tokenizer,
|
|
skip_prompt=True,
|
|
skip_special_tokens=True)
|
|
config=dict(inputs,
|
|
max_new_tokens=max_tokens,
|
|
temperature=request.Temperature,
|
|
top_p=request.TopP,
|
|
top_k=request.TopK,
|
|
do_sample=sample,
|
|
attention_mask=inputs["attention_mask"],
|
|
eos_token_id=self.tokenizer.eos_token_id,
|
|
pad_token_id=self.tokenizer.eos_token_id,
|
|
streamer=streamer,
|
|
stopping_criteria=criteria,
|
|
use_cache=True,
|
|
)
|
|
thread=Thread(target=self.model.generate, kwargs=config)
|
|
thread.start()
|
|
generated_text = ""
|
|
try:
|
|
for new_text in streamer:
|
|
generated_text += new_text
|
|
yield backend_pb2.Reply(message=bytes(new_text, encoding='utf-8'))
|
|
finally:
|
|
thread.join()
|
|
else:
|
|
if XPU and self.OV == False:
|
|
outputs = self.model.generate(inputs["input_ids"],
|
|
max_new_tokens=max_tokens,
|
|
temperature=request.Temperature,
|
|
top_p=request.TopP,
|
|
top_k=request.TopK,
|
|
do_sample=sample,
|
|
pad_token=self.tokenizer.eos_token_id)
|
|
else:
|
|
outputs = self.model.generate(**inputs,
|
|
max_new_tokens=max_tokens,
|
|
temperature=request.Temperature,
|
|
top_p=request.TopP,
|
|
top_k=request.TopK,
|
|
do_sample=sample,
|
|
eos_token_id=self.tokenizer.eos_token_id,
|
|
pad_token_id=self.tokenizer.eos_token_id,
|
|
stopping_criteria=criteria,
|
|
use_cache=True,
|
|
)
|
|
generated_text = self.tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)[0]
|
|
|
|
if streaming:
|
|
return
|
|
|
|
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
|
|
|
async def Predict(self, request, context):
|
|
"""
|
|
Generates text based on the given prompt and sampling parameters.
|
|
|
|
Args:
|
|
request: The predict request.
|
|
context: The gRPC context.
|
|
|
|
Returns:
|
|
backend_pb2.Reply: The predict result.
|
|
"""
|
|
gen = self._predict(request, context, streaming=False)
|
|
res = await gen.__anext__()
|
|
return res
|
|
|
|
async def PredictStream(self, request, context):
|
|
"""
|
|
Generates text based on the given prompt and sampling parameters, and streams the results.
|
|
|
|
Args:
|
|
request: The predict stream request.
|
|
context: The gRPC context.
|
|
|
|
Returns:
|
|
backend_pb2.Result: The predict stream result.
|
|
"""
|
|
iterations = self._predict(request, context, streaming=True)
|
|
try:
|
|
async for iteration in iterations:
|
|
yield iteration
|
|
finally:
|
|
await iterations.aclose()
|
|
|
|
async def serve(address):
|
|
# Start asyncio gRPC server
|
|
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
# Add the servicer to the server
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
# Bind the server to the address
|
|
server.add_insecure_port(address)
|
|
|
|
# Gracefully shutdown the server on SIGTERM or SIGINT
|
|
loop = asyncio.get_event_loop()
|
|
for sig in (signal.SIGINT, signal.SIGTERM):
|
|
loop.add_signal_handler(
|
|
sig, lambda: asyncio.ensure_future(server.stop(5))
|
|
)
|
|
|
|
# Start the server
|
|
await server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
# Wait for the server to be terminated
|
|
await server.wait_for_termination()
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
asyncio.run(serve(args.addr))
|