mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-03 11:24:10 +00:00
0135e1e3b9
* fix: use vllm AsyncLLMEngine to bring true stream Current vLLM implementation uses the LLMEngine, which was designed for offline batch inference, which results in the streaming mode outputing all blobs at once at the end of the inference. This PR reworks the gRPC server to use asyncio and gRPC.aio, in combination with vLLM's AsyncLLMEngine to bring true stream mode. This PR also passes more parameters to vLLM during inference (presence_penalty, frequency_penalty, stop, ignore_eos, seed, ...). * Remove unused import
210 lines
7.0 KiB
Python
210 lines
7.0 KiB
Python
#!/usr/bin/env python3
|
|
import asyncio
|
|
from concurrent import futures
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.utils import random_uuid
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
A gRPC servicer that implements the Backend service defined in backend.proto.
|
|
"""
|
|
def generate(self,prompt, max_new_tokens):
|
|
"""
|
|
Generates text based on the given prompt and maximum number of new tokens.
|
|
|
|
Args:
|
|
prompt (str): The prompt to generate text from.
|
|
max_new_tokens (int): The maximum number of new tokens to generate.
|
|
|
|
Returns:
|
|
str: The generated text.
|
|
"""
|
|
self.generator.end_beam_search()
|
|
|
|
# Tokenizing the input
|
|
ids = self.generator.tokenizer.encode(prompt)
|
|
|
|
self.generator.gen_begin_reuse(ids)
|
|
initial_len = self.generator.sequence[0].shape[0]
|
|
has_leading_space = False
|
|
decoded_text = ''
|
|
for i in range(max_new_tokens):
|
|
token = self.generator.gen_single_token()
|
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
|
has_leading_space = True
|
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
|
if has_leading_space:
|
|
decoded_text = ' ' + decoded_text
|
|
|
|
if token.item() == self.generator.tokenizer.eos_token_id:
|
|
break
|
|
return decoded_text
|
|
|
|
def Health(self, request, context):
|
|
"""
|
|
Returns a health check message.
|
|
|
|
Args:
|
|
request: The health check request.
|
|
context: The gRPC context.
|
|
|
|
Returns:
|
|
backend_pb2.Reply: The health check reply.
|
|
"""
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
"""
|
|
Loads a language model.
|
|
|
|
Args:
|
|
request: The load model request.
|
|
context: The gRPC context.
|
|
|
|
Returns:
|
|
backend_pb2.Result: The load model result.
|
|
"""
|
|
engine_args = AsyncEngineArgs(
|
|
model=request.Model,
|
|
)
|
|
|
|
if request.Quantization != "":
|
|
engine_args.quantization = request.Quantization
|
|
|
|
try:
|
|
self.llm = AsyncLLMEngine.from_engine_args(engine_args)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
async def Predict(self, request, context):
|
|
"""
|
|
Generates text based on the given prompt and sampling parameters.
|
|
|
|
Args:
|
|
request: The predict request.
|
|
context: The gRPC context.
|
|
|
|
Returns:
|
|
backend_pb2.Reply: The predict result.
|
|
"""
|
|
gen = self._predict(request, context, streaming=False)
|
|
res = await gen.__anext__()
|
|
return res
|
|
|
|
async def PredictStream(self, request, context):
|
|
"""
|
|
Generates text based on the given prompt and sampling parameters, and streams the results.
|
|
|
|
Args:
|
|
request: The predict stream request.
|
|
context: The gRPC context.
|
|
|
|
Returns:
|
|
backend_pb2.Result: The predict stream result.
|
|
"""
|
|
iterations = self._predict(request, context, streaming=True)
|
|
try:
|
|
async for iteration in iterations:
|
|
yield iteration
|
|
finally:
|
|
await iterations.aclose()
|
|
|
|
async def _predict(self, request, context, streaming=False):
|
|
|
|
# Build sampling parameters
|
|
sampling_params = SamplingParams(top_p=0.9, max_tokens=200)
|
|
if request.TopP != 0:
|
|
sampling_params.top_p = request.TopP
|
|
if request.Tokens > 0:
|
|
sampling_params.max_tokens = request.Tokens
|
|
if request.Temperature != 0:
|
|
sampling_params.temperature = request.Temperature
|
|
if request.TopK != 0:
|
|
sampling_params.top_k = request.TopK
|
|
if request.PresencePenalty != 0:
|
|
sampling_params.presence_penalty = request.PresencePenalty
|
|
if request.FrequencyPenalty != 0:
|
|
sampling_params.frequency_penalty = request.FrequencyPenalty
|
|
if request.StopPrompts:
|
|
sampling_params.stop = request.StopPrompts
|
|
if request.IgnoreEOS:
|
|
sampling_params.ignore_eos = request.IgnoreEOS
|
|
if request.Seed != 0:
|
|
sampling_params.seed = request.Seed
|
|
|
|
# Generate text
|
|
request_id = random_uuid()
|
|
outputs = self.llm.generate(request.Prompt, sampling_params, request_id)
|
|
|
|
# Stream the results
|
|
generated_text = ""
|
|
try:
|
|
async for request_output in outputs:
|
|
iteration_text = request_output.outputs[0].text
|
|
|
|
if streaming:
|
|
# Remove text already sent as vllm concatenates the text from previous yields
|
|
delta_iteration_text = iteration_text.removeprefix(generated_text)
|
|
# Send the partial result
|
|
yield backend_pb2.Reply(message=bytes(delta_iteration_text, encoding='utf-8'))
|
|
|
|
# Keep track of text generated
|
|
generated_text = iteration_text
|
|
finally:
|
|
await outputs.aclose()
|
|
|
|
# If streaming, we already sent everything
|
|
if streaming:
|
|
return
|
|
|
|
# Sending the final generated text
|
|
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
|
|
|
async def serve(address):
|
|
# Start asyncio gRPC server
|
|
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
# Add the servicer to the server
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
# Bind the server to the address
|
|
server.add_insecure_port(address)
|
|
|
|
# Gracefully shutdown the server on SIGTERM or SIGINT
|
|
loop = asyncio.get_event_loop()
|
|
for sig in (signal.SIGINT, signal.SIGTERM):
|
|
loop.add_signal_handler(
|
|
sig, lambda: asyncio.ensure_future(server.stop(5))
|
|
)
|
|
|
|
# Start the server
|
|
await server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
# Wait for the server to be terminated
|
|
await server.wait_for_termination()
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
asyncio.run(serve(args.addr)) |