mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-21 20:08:51 +00:00
cf747bcdec
* feat: extract output with regexes from LLMs This changset adds `extract_regex` to the LLM config. It is a list of regexes that can match output and will be used to re extract text from the LLM output. This is particularly useful for LLMs which outputs final results into tags. Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Add tests, enhance output in case of configuration error Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
226 lines
5.9 KiB
Go
226 lines
5.9 KiB
Go
package backend
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"os"
|
|
"regexp"
|
|
"strings"
|
|
"sync"
|
|
"unicode/utf8"
|
|
|
|
"github.com/rs/zerolog/log"
|
|
|
|
"github.com/mudler/LocalAI/core/config"
|
|
"github.com/mudler/LocalAI/core/schema"
|
|
|
|
"github.com/mudler/LocalAI/core/gallery"
|
|
"github.com/mudler/LocalAI/pkg/grpc"
|
|
"github.com/mudler/LocalAI/pkg/grpc/proto"
|
|
model "github.com/mudler/LocalAI/pkg/model"
|
|
"github.com/mudler/LocalAI/pkg/utils"
|
|
)
|
|
|
|
type LLMResponse struct {
|
|
Response string // should this be []byte?
|
|
Usage TokenUsage
|
|
}
|
|
|
|
type TokenUsage struct {
|
|
Prompt int
|
|
Completion int
|
|
}
|
|
|
|
func ModelInference(ctx context.Context, s string, messages []schema.Message, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
|
modelFile := c.Model
|
|
threads := c.Threads
|
|
if *threads == 0 && o.Threads != 0 {
|
|
threads = &o.Threads
|
|
}
|
|
grpcOpts := gRPCModelOpts(c)
|
|
|
|
var inferenceModel grpc.Backend
|
|
var err error
|
|
|
|
opts := modelOpts(c, o, []model.Option{
|
|
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
|
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
|
|
model.WithAssetDir(o.AssetsDestination),
|
|
model.WithModel(modelFile),
|
|
model.WithContext(o.Context),
|
|
})
|
|
|
|
if c.Backend != "" {
|
|
opts = append(opts, model.WithBackendString(c.Backend))
|
|
}
|
|
|
|
// Check if the modelFile exists, if it doesn't try to load it from the gallery
|
|
if o.AutoloadGalleries { // experimental
|
|
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
|
utils.ResetDownloadTimers()
|
|
// if we failed to load the model, we try to download it
|
|
err := gallery.InstallModelFromGallery(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction, o.EnforcePredownloadScans)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
if c.Backend == "" {
|
|
inferenceModel, err = loader.GreedyLoader(opts...)
|
|
} else {
|
|
inferenceModel, err = loader.BackendLoader(opts...)
|
|
}
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var protoMessages []*proto.Message
|
|
// if we are using the tokenizer template, we need to convert the messages to proto messages
|
|
// unless the prompt has already been tokenized (non-chat endpoints + functions)
|
|
if c.TemplateConfig.UseTokenizerTemplate && s == "" {
|
|
protoMessages = make([]*proto.Message, len(messages), len(messages))
|
|
for i, message := range messages {
|
|
protoMessages[i] = &proto.Message{
|
|
Role: message.Role,
|
|
}
|
|
switch ct := message.Content.(type) {
|
|
case string:
|
|
protoMessages[i].Content = ct
|
|
default:
|
|
return nil, fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
|
|
}
|
|
}
|
|
}
|
|
|
|
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
|
|
fn := func() (LLMResponse, error) {
|
|
opts := gRPCPredictOpts(c, loader.ModelPath)
|
|
opts.Prompt = s
|
|
opts.Messages = protoMessages
|
|
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
|
|
opts.Images = images
|
|
|
|
tokenUsage := TokenUsage{}
|
|
|
|
// check the per-model feature flag for usage, since tokenCallback may have a cost.
|
|
// Defaults to off as for now it is still experimental
|
|
if c.FeatureFlag.Enabled("usage") {
|
|
userTokenCallback := tokenCallback
|
|
if userTokenCallback == nil {
|
|
userTokenCallback = func(token string, usage TokenUsage) bool {
|
|
return true
|
|
}
|
|
}
|
|
|
|
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
|
|
if pErr == nil && promptInfo.Length > 0 {
|
|
tokenUsage.Prompt = int(promptInfo.Length)
|
|
}
|
|
|
|
tokenCallback = func(token string, usage TokenUsage) bool {
|
|
tokenUsage.Completion++
|
|
return userTokenCallback(token, tokenUsage)
|
|
}
|
|
}
|
|
|
|
if tokenCallback != nil {
|
|
ss := ""
|
|
|
|
var partialRune []byte
|
|
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
|
|
partialRune = append(partialRune, chars...)
|
|
|
|
for len(partialRune) > 0 {
|
|
r, size := utf8.DecodeRune(partialRune)
|
|
if r == utf8.RuneError {
|
|
// incomplete rune, wait for more bytes
|
|
break
|
|
}
|
|
|
|
tokenCallback(string(r), tokenUsage)
|
|
ss += string(r)
|
|
|
|
partialRune = partialRune[size:]
|
|
}
|
|
})
|
|
return LLMResponse{
|
|
Response: ss,
|
|
Usage: tokenUsage,
|
|
}, err
|
|
} else {
|
|
// TODO: Is the chicken bit the only way to get here? is that acceptable?
|
|
reply, err := inferenceModel.Predict(ctx, opts)
|
|
if err != nil {
|
|
return LLMResponse{}, err
|
|
}
|
|
if tokenUsage.Prompt == 0 {
|
|
tokenUsage.Prompt = int(reply.PromptTokens)
|
|
}
|
|
if tokenUsage.Completion == 0 {
|
|
tokenUsage.Completion = int(reply.Tokens)
|
|
}
|
|
return LLMResponse{
|
|
Response: string(reply.Message),
|
|
Usage: tokenUsage,
|
|
}, err
|
|
}
|
|
}
|
|
|
|
return fn, nil
|
|
}
|
|
|
|
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
|
var mu sync.Mutex = sync.Mutex{}
|
|
|
|
func Finetune(config config.BackendConfig, input, prediction string) string {
|
|
if config.Echo {
|
|
prediction = input + prediction
|
|
}
|
|
|
|
for _, c := range config.Cutstrings {
|
|
mu.Lock()
|
|
reg, ok := cutstrings[c]
|
|
if !ok {
|
|
r, err := regexp.Compile(c)
|
|
if err != nil {
|
|
log.Fatal().Err(err).Msg("failed to compile regex")
|
|
}
|
|
cutstrings[c] = r
|
|
reg = cutstrings[c]
|
|
}
|
|
mu.Unlock()
|
|
prediction = reg.ReplaceAllString(prediction, "")
|
|
}
|
|
|
|
// extract results from the response which can be for instance inside XML tags
|
|
var predResult string
|
|
for _, r := range config.ExtractRegex {
|
|
mu.Lock()
|
|
reg, ok := cutstrings[r]
|
|
if !ok {
|
|
regex, err := regexp.Compile(r)
|
|
if err != nil {
|
|
log.Fatal().Err(err).Msg("failed to compile regex")
|
|
}
|
|
cutstrings[r] = regex
|
|
reg = regex
|
|
}
|
|
mu.Unlock()
|
|
predResult += reg.FindString(prediction)
|
|
}
|
|
if predResult != "" {
|
|
prediction = predResult
|
|
}
|
|
|
|
for _, c := range config.TrimSpace {
|
|
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
|
}
|
|
|
|
for _, c := range config.TrimSuffix {
|
|
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
|
|
}
|
|
return prediction
|
|
}
|