+++ disableToc = false title = "Getting started" weight = 1 url = '/basics/getting_started/' +++ `LocalAI` is available as a container image and binary. It can be used with docker, podman, kubernetes and any container engine. Container images are published to [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest) and [Dockerhub](https://hub.docker.com/r/localai/localai). [](https://hub.docker.com/r/localai/localai) [](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest) See also our [How to]({{%relref "howtos" %}}) section for end-to-end guided examples curated by the community. ### How to get started The easiest way to run LocalAI is by using [`docker compose`](https://docs.docker.com/compose/install/) or with [Docker](https://docs.docker.com/engine/install/) (to build locally, see the [build section]({{%relref "build" %}})). LocalAI needs at least a model file to work, or a configuration YAML file, or both. You can customize further model defaults and specific settings with a configuration file (see [advanced]({{%relref "advanced" %}})). {{% notice note %}} To run with GPU Accelleration, see [GPU acceleration]({{%relref "features/gpu-acceleration" %}}). {{% /notice %}} {{< tabs >}} {{% tab name="Docker" %}} ```bash # Prepare the models into the `model` directory mkdir models # copy your models to it cp your-model.gguf models/ # run the LocalAI container docker run -p 8080:8080 -v $PWD/models:/models -ti --rm quay.io/go-skynet/local-ai:latest --models-path /models --context-size 700 --threads 4 # You should see: # # ┌───────────────────────────────────────────────────┐ # │ Fiber v2.42.0 │ # │ http://127.0.0.1:8080 │ # │ (bound on host 0.0.0.0 and port 8080) │ # │ │ # │ Handlers ............. 1 Processes ........... 1 │ # │ Prefork ....... Disabled PID ................. 1 │ # └───────────────────────────────────────────────────┘ # Try the endpoint with curl curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{ "model": "your-model.gguf", "prompt": "A long time ago in a galaxy far, far away", "temperature": 0.7 }' ``` {{% notice note %}} - If running on Apple Silicon (ARM) it is **not** suggested to run on Docker due to emulation. Follow the [build instructions]({{%relref "build" %}}) to use Metal acceleration for full GPU support. - If you are running Apple x86_64 you can use `docker`, there is no additional gain into building it from source. {{% /notice %}} {{% /tab %}} {{% tab name="Docker compose" %}} ```bash # Clone LocalAI git clone https://github.com/go-skynet/LocalAI cd LocalAI # (optional) Checkout a specific LocalAI tag # git checkout -b build # copy your models to models/ cp your-model.gguf models/ # (optional) Edit the .env file to set things like context size and threads # vim .env # start with docker compose docker compose up -d --pull always # or you can build the images with: # docker compose up -d --build # Now API is accessible at localhost:8080 curl http://localhost:8080/v1/models # {"object":"list","data":[{"id":"your-model.gguf","object":"model"}]} curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{ "model": "your-model.gguf", "prompt": "A long time ago in a galaxy far, far away", "temperature": 0.7 }' ``` Note: If you are on Windows, please make sure the project is on the Linux Filesystem, otherwise loading models might be slow. For more Info: [Microsoft Docs](https://learn.microsoft.com/en-us/windows/wsl/filesystems) {{% /tab %}} {{% tab name="Kubernetes" %}} For installing LocalAI in Kubernetes, you can use the following helm chart: ```bash # Install the helm repository helm repo add go-skynet https://go-skynet.github.io/helm-charts/ # Update the repositories helm repo update # Get the values helm show values go-skynet/local-ai > values.yaml # Edit the values value if needed # vim values.yaml ... # Install the helm chart helm install local-ai go-skynet/local-ai -f values.yaml ``` {{% /tab %}} {{% tab name="From binary" %}} LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases). {{% /tab %}} {{% tab name="From source" %}} See the [build section]({{%relref "build" %}}). {{% /tab %}} {{< /tabs >}} ### Running Popular models (one-click!) You can run `local-ai` directly with a model name, and it will download the model and start the API with the model loaded. > Don't need GPU acceleration? use the CPU images which are lighter and do not have Nvidia dependencies > To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` {{< tabs >}} {{% tab name="CPU-only" %}} | Model | Category | Docker command | | --- | --- | --- | | [phi-2](https://huggingface.co/microsoft/phi-2) | LLM | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core phi-2``` | | [llava](https://github.com/SkunkworksAI/BakLLaVA) | Multimodal LLM | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava``` | | [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | LLM | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mistral-openorca``` | | [bert-cpp](https://github.com/skeskinen/bert.cpp) | Embeddings | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bert-cpp``` | | all-minilm-l6-v2 | Embeddings | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg all-minilm-l6-v2``` | | whisper-base | Audio to Text | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core whisper-base``` | | rhasspy-voice-en-us-amy | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core rhasspy-voice-en-us-amy``` | | coqui | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg coqui``` | | bark | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg bark``` | | vall-e-x | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg vall-e-x``` | {{% /tab %}} {{% tab name="GPU (CUDA 11)" %}} | Model | Category | Docker command | | --- | --- | --- | | [phi-2](https://huggingface.co/microsoft/phi-2) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core phi-2``` | | [llava](https://github.com/SkunkworksAI/BakLLaVA) | Multimodal LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core llava``` | | [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mistral-openorca``` | | [bert-cpp](https://github.com/skeskinen/bert.cpp) | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bert-cpp``` | | [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 all-minilm-l6-v2``` | | whisper-base | Audio to Text | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core whisper-base``` | | rhasspy-voice-en-us-amy | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core rhasspy-voice-en-us-amy``` | | coqui | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 coqui``` | | bark | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 bark``` | | vall-e-x | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 vall-e-x``` | {{% /tab %}} {{% tab name="GPU (CUDA 12)" %}} | Model | Category | Docker command | | --- | --- | --- | | [phi-2](https://huggingface.co/microsoft/phi-2) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core phi-2``` | | [llava](https://github.com/SkunkworksAI/BakLLaVA) | Multimodal LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core llava``` | | [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mistral-openorca``` | | bert-cpp | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bert-cpp``` | | all-minilm-l6-v2 | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 all-minilm-l6-v2``` | | whisper-base | Audio to Text | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core whisper-base``` | | rhasspy-voice-en-us-amy | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core rhasspy-voice-en-us-amy``` | | coqui | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 coqui``` | | bark | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 bark``` | | vall-e-x | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 vall-e-x``` | {{% /tab %}} {{< /tabs >}} {{% notice note %}} LocalAI can be started (either the container image or the binary) with a list of model config files URLs or our short-handed format (e.g. `huggingface://`. `github://`). It works by passing the urls as arguments or environment variable, for example: ``` local-ai github://owner/repo/file.yaml@branch # Env MODELS="github://owner/repo/file.yaml@branch,github://owner/repo/file.yaml@branch" local-ai # Args local-ai --models github://owner/repo/file.yaml@branch --models github://owner/repo/file.yaml@branch ``` For example, to start localai with phi-2, it's possible for instance to also use a full config file from gists: ```bash docker run -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core https://gist.githubusercontent.com/mudler/ad601a0488b497b69ec549150d9edd18/raw/a8a8869ef1bb7e3830bf5c0bae29a0cce991ff8d/phi-2.yaml ``` The file should be a valid LocalAI YAML configuration file, for the full syntax see [advanced]({{%relref "advanced" %}}). {{% /notice %}} ### Container images LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags): {{< tabs >}} {{% tab name="Vanilla / CPU Images" %}} - `master` - `latest` - `{{< version >}}` - `{{< version >}}-ffmpeg` - `{{< version >}}-ffmpeg-core` Core Images - Smaller images without predownload python dependencies {{% /tab %}} {{% tab name="GPU Images CUDA 11" %}} Images with Nvidia accelleration support > If you do not know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` - `master-cublas-cuda11` - `master-cublas-cuda11-core` - `{{< version >}}-cublas-cuda11` - `{{< version >}}-cublas-cuda11-core` - `{{< version >}}-cublas-cuda11-ffmpeg` - `{{< version >}}-cublas-cuda11-ffmpeg-core` Core Images - Smaller images without predownload python dependencies {{% /tab %}} {{% tab name="GPU Images CUDA 12" %}} Images with Nvidia accelleration support > If you do not know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` - `master-cublas-cuda12` - `master-cublas-cuda12-core` - `{{< version >}}-cublas-cuda12` - `{{< version >}}-cublas-cuda12-core` - `{{< version >}}-cublas-cuda12-ffmpeg` - `{{< version >}}-cublas-cuda12-ffmpeg-core` Core Images - Smaller images without predownload python dependencies {{% /tab %}} {{< /tabs >}} Example: - Standard (GPT + `stablediffusion`): `quay.io/go-skynet/local-ai:latest` - FFmpeg: `quay.io/go-skynet/local-ai:{{< version >}}-ffmpeg` - CUDA 11+FFmpeg: `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11-ffmpeg` - CUDA 12+FFmpeg: `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12-ffmpeg` {{% notice note %}} Note: the binary inside the image is pre-compiled, and might not suite all CPUs. To enable CPU optimizations for the execution environment, the default behavior is to rebuild when starting the container. To disable this auto-rebuild behavior, set the environment variable `REBUILD` to `false`. See [docs on all environment variables]({{%relref "advanced#environment-variables" %}}) for more info. {{% /notice %}} ### Example: Use luna-ai-llama2 model with `docker` ```bash mkdir models # Download luna-ai-llama2 to models/ wget https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2 # Use a template from the examples cp -rf prompt-templates/getting_started.tmpl models/luna-ai-llama2.tmpl docker run -p 8080:8080 -v $PWD/models:/models -ti --rm quay.io/go-skynet/local-ai:latest --models-path /models --context-size 700 --threads 4 # Now API is accessible at localhost:8080 curl http://localhost:8080/v1/models # {"object":"list","data":[{"id":"luna-ai-llama2","object":"model"}]} curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "luna-ai-llama2", "messages": [{"role": "user", "content": "How are you?"}], "temperature": 0.9 }' # {"model":"luna-ai-llama2","choices":[{"message":{"role":"assistant","content":"I'm doing well, thanks. How about you?"}}]} ``` To see other model configurations, see also the example section [here](https://github.com/mudler/LocalAI/tree/master/examples/configurations). ### Examples ![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png) To see other examples on how to integrate with other projects for instance for question answering or for using it with chatbot-ui, see: [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/).