package openai import ( "bufio" "bytes" "encoding/json" "fmt" "strings" "time" "github.com/go-skynet/LocalAI/core/backend" "github.com/go-skynet/LocalAI/core/config" "github.com/go-skynet/LocalAI/core/schema" "github.com/go-skynet/LocalAI/pkg/grammar" model "github.com/go-skynet/LocalAI/pkg/model" "github.com/go-skynet/LocalAI/pkg/utils" "github.com/gofiber/fiber/v2" "github.com/google/uuid" "github.com/rs/zerolog/log" "github.com/valyala/fasthttp" ) // ChatEndpoint is the OpenAI Completion API endpoint https://platform.openai.com/docs/api-reference/chat/create // @Summary Generate a chat completions for a given prompt and model. // @Param request body schema.OpenAIRequest true "query params" // @Success 200 {object} schema.OpenAIResponse "Response" // @Router /v1/chat/completions [post] func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error { emptyMessage := "" id := uuid.New().String() created := int(time.Now().Unix()) process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) { initialMessage := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}}, Object: "chat.completion.chunk", } responses <- initialMessage ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool { resp := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}}, Object: "chat.completion.chunk", Usage: schema.OpenAIUsage{ PromptTokens: usage.Prompt, CompletionTokens: usage.Completion, TotalTokens: usage.Prompt + usage.Completion, }, } responses <- resp return true }) close(responses) } processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) { result := "" _, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool { result += s // TODO: Change generated BNF grammar to be compliant with the schema so we can // stream the result token by token here. return true }) results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls) noActionToRun := len(results) > 0 && results[0].name == noAction switch { case noActionToRun: initialMessage := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}}, Object: "chat.completion.chunk", } responses <- initialMessage result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt) if err != nil { log.Error().Err(err).Msg("error handling question") return } resp := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}}, Object: "chat.completion.chunk", Usage: schema.OpenAIUsage{ PromptTokens: tokenUsage.Prompt, CompletionTokens: tokenUsage.Completion, TotalTokens: tokenUsage.Prompt + tokenUsage.Completion, }, } responses <- resp default: for i, ss := range results { name, args := ss.name, ss.arguments initialMessage := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{ Delta: &schema.Message{ Role: "assistant", ToolCalls: []schema.ToolCall{ { Index: i, ID: id, Type: "function", FunctionCall: schema.FunctionCall{ Name: name, }, }, }, }}}, Object: "chat.completion.chunk", } responses <- initialMessage responses <- schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{ Delta: &schema.Message{ Role: "assistant", ToolCalls: []schema.ToolCall{ { Index: i, ID: id, Type: "function", FunctionCall: schema.FunctionCall{ Arguments: args, }, }, }, }}}, Object: "chat.completion.chunk", } } } close(responses) } return func(c *fiber.Ctx) error { processFunctions := false funcs := grammar.Functions{} modelFile, input, err := readRequest(c, ml, startupOptions, true) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } log.Debug().Msgf("Configuration read: %+v", config) // Allow the user to set custom actions via config file // to be "embedded" in each model noActionName := "answer" noActionDescription := "use this action to answer without performing any action" if config.FunctionsConfig.NoActionFunctionName != "" { noActionName = config.FunctionsConfig.NoActionFunctionName } if config.FunctionsConfig.NoActionDescriptionName != "" { noActionDescription = config.FunctionsConfig.NoActionDescriptionName } if input.ResponseFormat.Type == "json_object" { input.Grammar = grammar.JSONBNF } config.Grammar = input.Grammar // process functions if we have any defined or if we have a function call string if len(input.Functions) > 0 && config.ShouldUseFunctions() { log.Debug().Msgf("Response needs to process functions") processFunctions = true noActionGrammar := grammar.Function{ Name: noActionName, Description: noActionDescription, Parameters: map[string]interface{}{ "properties": map[string]interface{}{ "message": map[string]interface{}{ "type": "string", "description": "The message to reply the user with", }}, }, } // Append the no action function funcs = append(funcs, input.Functions...) if !config.FunctionsConfig.DisableNoAction { funcs = append(funcs, noActionGrammar) } // Force picking one of the functions by the request if config.FunctionToCall() != "" { funcs = funcs.Select(config.FunctionToCall()) } // Update input grammar jsStruct := funcs.ToJSONStructure() config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls) } else if input.JSONFunctionGrammarObject != nil { config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls) } // functions are not supported in stream mode (yet?) toStream := input.Stream log.Debug().Msgf("Parameters: %+v", config) var predInput string // If we are using the tokenizer template, we don't need to process the messages // unless we are processing functions if !config.TemplateConfig.UseTokenizerTemplate || processFunctions { suppressConfigSystemPrompt := false mess := []string{} for messageIndex, i := range input.Messages { var content string role := i.Role // if function call, we might want to customize the role so we can display better that the "assistant called a json action" // if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" { roleFn := "assistant_function_call" r := config.Roles[roleFn] if r != "" { role = roleFn } } r := config.Roles[role] contentExists := i.Content != nil && i.StringContent != "" fcall := i.FunctionCall if len(i.ToolCalls) > 0 { fcall = i.ToolCalls } // First attempt to populate content via a chat message specific template if config.TemplateConfig.ChatMessage != "" { chatMessageData := model.ChatMessageTemplateData{ SystemPrompt: config.SystemPrompt, Role: r, RoleName: role, Content: i.StringContent, FunctionCall: fcall, FunctionName: i.Name, LastMessage: messageIndex == (len(input.Messages) - 1), Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)), MessageIndex: messageIndex, } templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData) if err != nil { log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping") } else { if templatedChatMessage == "" { log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData) continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf } log.Debug().Msgf("templated message for chat: %s", templatedChatMessage) content = templatedChatMessage } } marshalAnyRole := func(f any) { j, err := json.Marshal(f) if err == nil { if contentExists { content += "\n" + fmt.Sprint(r, " ", string(j)) } else { content = fmt.Sprint(r, " ", string(j)) } } } marshalAny := func(f any) { j, err := json.Marshal(f) if err == nil { if contentExists { content += "\n" + string(j) } else { content = string(j) } } } // If this model doesn't have such a template, or if that template fails to return a value, template at the message level. if content == "" { if r != "" { if contentExists { content = fmt.Sprint(r, i.StringContent) } if i.FunctionCall != nil { marshalAnyRole(i.FunctionCall) } if i.ToolCalls != nil { marshalAnyRole(i.ToolCalls) } } else { if contentExists { content = fmt.Sprint(i.StringContent) } if i.FunctionCall != nil { marshalAny(i.FunctionCall) } if i.ToolCalls != nil { marshalAny(i.ToolCalls) } } // Special Handling: System. We care if it was printed at all, not the r branch, so check seperately if contentExists && role == "system" { suppressConfigSystemPrompt = true } } mess = append(mess, content) } predInput = strings.Join(mess, "\n") log.Debug().Msgf("Prompt (before templating): %s", predInput) templateFile := "" // A model can have a "file.bin.tmpl" file associated with a prompt template prefix if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) { templateFile = config.Model } if config.TemplateConfig.Chat != "" && !processFunctions { templateFile = config.TemplateConfig.Chat } if config.TemplateConfig.Functions != "" && processFunctions { templateFile = config.TemplateConfig.Functions } if templateFile != "" { templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{ SystemPrompt: config.SystemPrompt, SuppressSystemPrompt: suppressConfigSystemPrompt, Input: predInput, Functions: funcs, }) if err == nil { predInput = templatedInput log.Debug().Msgf("Template found, input modified to: %s", predInput) } else { log.Debug().Msgf("Template failed loading: %s", err.Error()) } } log.Debug().Msgf("Prompt (after templating): %s", predInput) if processFunctions { log.Debug().Msgf("Grammar: %+v", config.Grammar) } } switch { case toStream: log.Debug().Msgf("Stream request received") c.Context().SetContentType("text/event-stream") //c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8) // c.Set("Content-Type", "text/event-stream") c.Set("Cache-Control", "no-cache") c.Set("Connection", "keep-alive") c.Set("Transfer-Encoding", "chunked") responses := make(chan schema.OpenAIResponse) if !processFunctions { go process(predInput, input, config, ml, responses) } else { go processTools(noActionName, predInput, input, config, ml, responses) } c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) { usage := &schema.OpenAIUsage{} toolsCalled := false for ev := range responses { usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it if len(ev.Choices[0].Delta.ToolCalls) > 0 { toolsCalled = true } var buf bytes.Buffer enc := json.NewEncoder(&buf) enc.Encode(ev) log.Debug().Msgf("Sending chunk: %s", buf.String()) _, err := fmt.Fprintf(w, "data: %v\n", buf.String()) if err != nil { log.Debug().Msgf("Sending chunk failed: %v", err) input.Cancel() break } w.Flush() } finishReason := "stop" if toolsCalled { finishReason = "tool_calls" } else if toolsCalled && len(input.Tools) == 0 { finishReason = "function_call" } resp := &schema.OpenAIResponse{ ID: id, Created: created, Model: input.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{ { FinishReason: finishReason, Index: 0, Delta: &schema.Message{Content: &emptyMessage}, }}, Object: "chat.completion.chunk", Usage: *usage, } respData, _ := json.Marshal(resp) w.WriteString(fmt.Sprintf("data: %s\n\n", respData)) w.WriteString("data: [DONE]\n\n") w.Flush() })) return nil // no streaming mode default: result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) { if !processFunctions { // no function is called, just reply and use stop as finish reason *c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}}) return } results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls) noActionsToRun := len(results) > 0 && results[0].name == noActionName switch { case noActionsToRun: result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput) if err != nil { log.Error().Err(err).Msg("error handling question") return } *c = append(*c, schema.Choice{ Message: &schema.Message{Role: "assistant", Content: &result}}) default: toolChoice := schema.Choice{ Message: &schema.Message{ Role: "assistant", }, } if len(input.Tools) > 0 { toolChoice.FinishReason = "tool_calls" } for _, ss := range results { name, args := ss.name, ss.arguments if len(input.Tools) > 0 { // If we are using tools, we condense the function calls into // a single response choice with all the tools toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls, schema.ToolCall{ ID: id, Type: "function", FunctionCall: schema.FunctionCall{ Name: name, Arguments: args, }, }, ) } else { // otherwise we return more choices directly *c = append(*c, schema.Choice{ FinishReason: "function_call", Message: &schema.Message{ Role: "assistant", FunctionCall: map[string]interface{}{ "name": name, "arguments": args, }, }, }) } } if len(input.Tools) > 0 { // we need to append our result if we are using tools *c = append(*c, toolChoice) } } }, nil) if err != nil { return err } resp := &schema.OpenAIResponse{ ID: id, Created: created, Model: input.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: result, Object: "chat.completion", Usage: schema.OpenAIUsage{ PromptTokens: tokenUsage.Prompt, CompletionTokens: tokenUsage.Completion, TotalTokens: tokenUsage.Prompt + tokenUsage.Completion, }, } respData, _ := json.Marshal(resp) log.Debug().Msgf("Response: %s", respData) // Return the prediction in the response body return c.JSON(resp) } } } func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, args, prompt string) (string, error) { log.Debug().Msgf("nothing to do, computing a reply") // If there is a message that the LLM already sends as part of the JSON reply, use it arguments := map[string]interface{}{} json.Unmarshal([]byte(args), &arguments) m, exists := arguments["message"] if exists { switch message := m.(type) { case string: if message != "" { log.Debug().Msgf("Reply received from LLM: %s", message) message = backend.Finetune(*config, prompt, message) log.Debug().Msgf("Reply received from LLM(finetuned): %s", message) return message, nil } } } log.Debug().Msgf("No action received from LLM, without a message, computing a reply") // Otherwise ask the LLM to understand the JSON output and the context, and return a message // Note: This costs (in term of CPU/GPU) another computation config.Grammar = "" images := []string{} for _, m := range input.Messages { images = append(images, m.StringImages...) } predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, ml, *config, o, nil) if err != nil { log.Error().Err(err).Msg("model inference failed") return "", err } prediction, err := predFunc() if err != nil { log.Error().Err(err).Msg("prediction failed") return "", err } return backend.Finetune(*config, prompt, prediction.Response), nil } type funcCallResults struct { name string arguments string } func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults { results := []funcCallResults{} // TODO: use generics to avoid this code duplication if multipleResults { ss := []map[string]interface{}{} s := utils.EscapeNewLines(llmresult) json.Unmarshal([]byte(s), &ss) log.Debug().Msgf("Function return: %s %+v", s, ss) for _, s := range ss { func_name, ok := s["function"] if !ok { continue } args, ok := s["arguments"] if !ok { continue } d, _ := json.Marshal(args) funcName, ok := func_name.(string) if !ok { continue } results = append(results, funcCallResults{name: funcName, arguments: string(d)}) } } else { // As we have to change the result before processing, we can't stream the answer token-by-token (yet?) ss := map[string]interface{}{} // This prevent newlines to break JSON parsing for clients s := utils.EscapeNewLines(llmresult) json.Unmarshal([]byte(s), &ss) log.Debug().Msgf("Function return: %s %+v", s, ss) // The grammar defines the function name as "function", while OpenAI returns "name" func_name, ok := ss["function"] if !ok { return results } // Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix) if !ok { return results } d, _ := json.Marshal(args) funcName, ok := func_name.(string) if !ok { return results } results = append(results, funcCallResults{name: funcName, arguments: string(d)}) } return results }