+++ disableToc = false title = "Getting started" weight = 1 url = '/basics/getting_started/' +++ `LocalAI` is available as a container image and binary. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest). ### How to get started For a always up to date step by step how to of setting up LocalAI, Please see our [How to]({{%relref "howtos" %}}) page. ### Fast Setup The easiest way to run LocalAI is by using [`docker compose`](https://docs.docker.com/compose/install/) or with [Docker](https://docs.docker.com/engine/install/) (to build locally, see the [build section]({{%relref "build" %}})). The following example uses `docker compose`: ```bash git clone https://github.com/go-skynet/LocalAI cd LocalAI # (optional) Checkout a specific LocalAI tag # git checkout -b build # copy your models to models/ cp your-model.bin models/ # (optional) Edit the .env file to set things like context size and threads # vim .env # start with docker compose docker compose up -d --pull always # or you can build the images with: # docker compose up -d --build # Now API is accessible at localhost:8080 curl http://localhost:8080/v1/models # {"object":"list","data":[{"id":"your-model.bin","object":"model"}]} curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{ "model": "your-model.bin", "prompt": "A long time ago in a galaxy far, far away", "temperature": 0.7 }' ``` ### Example: Use luna-ai-llama2 model with `docker compose` ```bash # Clone LocalAI git clone https://github.com/go-skynet/LocalAI cd LocalAI # (optional) Checkout a specific LocalAI tag # git checkout -b build # Download luna-ai-llama2 to models/ wget https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2 # Use a template from the examples cp -rf prompt-templates/getting_started.tmpl models/luna-ai-llama2.tmpl # (optional) Edit the .env file to set things like context size and threads # vim .env # start with docker compose docker compose up -d --pull always # or you can build the images with: # docker compose up -d --build # Now API is accessible at localhost:8080 curl http://localhost:8080/v1/models # {"object":"list","data":[{"id":"luna-ai-llama2","object":"model"}]} curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "luna-ai-llama2", "messages": [{"role": "user", "content": "How are you?"}], "temperature": 0.9 }' # {"model":"luna-ai-llama2","choices":[{"message":{"role":"assistant","content":"I'm doing well, thanks. How about you?"}}]} ``` {{% notice note %}} - If running on Apple Silicon (ARM) it is **not** suggested to run on Docker due to emulation. Follow the [build instructions]({{%relref "build" %}}) to use Metal acceleration for full GPU support. - If you are running Apple x86_64 you can use `docker`, there is no additional gain into building it from source. - If you are on Windows, please run ``docker-compose`` not ``docker compose`` and make sure the project is in the Linux Filesystem, otherwise loading models might be slow. For more Info: [Microsoft Docs](https://learn.microsoft.com/en-us/windows/wsl/filesystems) {{% /notice %}} ### From binaries LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases). You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.
Usage: ``` local-ai --models-path [--address
] [--threads ] ``` | Parameter | Environmental Variable | Default Variable | Description | | ------------------------------ | ------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------- | | --f16 | $F16 | false | Enable f16 mode | | --debug | $DEBUG | false | Enable debug mode | | --cors | $CORS | false | Enable CORS support | | --cors-allow-origins value | $CORS_ALLOW_ORIGINS | | Specify origins allowed for CORS | | --threads value | $THREADS | 4 | Number of threads to use for parallel computation | | --models-path value | $MODELS_PATH | ./models | Path to the directory containing models used for inferencing | | --preload-models value | $PRELOAD_MODELS | | List of models to preload in JSON format at startup | | --preload-models-config value | $PRELOAD_MODELS_CONFIG | | A config with a list of models to apply at startup. Specify the path to a YAML config file | | --config-file value | $CONFIG_FILE | | Path to the config file | | --address value | $ADDRESS | :8080 | Specify the bind address for the API server | | --image-path value | $IMAGE_PATH | | Path to the directory used to store generated images | | --context-size value | $CONTEXT_SIZE | 512 | Default context size of the model | | --upload-limit value | $UPLOAD_LIMIT | 15 | Default upload limit in megabytes (audio file upload) | | --galleries | $GALLERIES | | Allows to set galleries from command line |
### Docker LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags): - Vanilla images tags: `master`, `v1.40.0`, `latest`, ... - FFmpeg images tags: `master-ffmpeg`, `v1.40.0-ffmpeg`, ... - CUDA `11` tags: `master-cublas-cuda11`, `v1.40.0-cublas-cuda11`, ... - CUDA `12` tags: `master-cublas-cuda12`, `v1.40.0-cublas-cuda12`, ... - CUDA `11` + FFmpeg tags: `master-cublas-cuda11-ffmpeg`, `v1.40.0-cublas-cuda11-ffmpeg`, ... - CUDA `12` + FFmpeg tags: `master-cublas-cuda12-ffmpeg`, `v1.40.0-cublas-cuda12-ffmpeg`, ... Example: - Standard (GPT + `stablediffusion`): `quay.io/go-skynet/local-ai:latest` - FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-ffmpeg` - CUDA 11+FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda11-ffmpeg` - CUDA 12+FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12-ffmpeg` Example of starting the API with `docker`: ```bash docker run -p 8080:8080 -v $PWD/models:/models -ti --rm quay.io/go-skynet/local-ai:latest --models-path /models --context-size 700 --threads 4 ``` You should see: ``` ┌───────────────────────────────────────────────────┐ │ Fiber v2.42.0 │ │ http://127.0.0.1:8080 │ │ (bound on host 0.0.0.0 and port 8080) │ │ │ │ Handlers ............. 1 Processes ........... 1 │ │ Prefork ....... Disabled PID ................. 1 │ └───────────────────────────────────────────────────┘ ``` {{% notice note %}} Note: the binary inside the image is pre-compiled, and might not suite all CPUs. To enable CPU optimizations for the execution environment, the default behavior is to rebuild when starting the container. To disable this auto-rebuild behavior, set the environment variable `REBUILD` to `false`. See [docs on all environment variables]({{%relref "advanced#environment-variables" %}}) for more info. {{% /notice %}} #### CUDA: Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)) You need to run the image with `--gpus all`, and ``` docker run --rm -ti --gpus all -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e PRELOAD_MODELS='[{"url": "github:go-skynet/model-gallery/openllama_7b.yaml", "name": "gpt-3.5-turbo", "overrides": { "f16":true, "gpu_layers": 35, "mmap": true, "batch": 512 } } ]' -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12 ``` In the terminal where LocalAI was started, you should see: ``` 5:13PM DBG Config overrides map[gpu_layers:10] 5:13PM DBG Checking "open-llama-7b-q4_0.bin" exists and matches SHA 5:13PM DBG Downloading "https://huggingface.co/SlyEcho/open_llama_7b_ggml/resolve/main/open-llama-7b-q4_0.bin" 5:13PM DBG Downloading open-llama-7b-q4_0.bin: 393.4 MiB/3.5 GiB (10.88%) ETA: 40.965550709s 5:13PM DBG Downloading open-llama-7b-q4_0.bin: 870.8 MiB/3.5 GiB (24.08%) ETA: 31.526866642s 5:13PM DBG Downloading open-llama-7b-q4_0.bin: 1.3 GiB/3.5 GiB (36.26%) ETA: 26.37351405s 5:13PM DBG Downloading open-llama-7b-q4_0.bin: 1.7 GiB/3.5 GiB (48.64%) ETA: 21.11682624s 5:13PM DBG Downloading open-llama-7b-q4_0.bin: 2.2 GiB/3.5 GiB (61.49%) ETA: 15.656029361s 5:14PM DBG Downloading open-llama-7b-q4_0.bin: 2.6 GiB/3.5 GiB (74.33%) ETA: 10.360950226s 5:14PM DBG Downloading open-llama-7b-q4_0.bin: 3.1 GiB/3.5 GiB (87.05%) ETA: 5.205663978s 5:14PM DBG Downloading open-llama-7b-q4_0.bin: 3.5 GiB/3.5 GiB (99.85%) ETA: 61.269714ms 5:14PM DBG File "open-llama-7b-q4_0.bin" downloaded and verified 5:14PM DBG Prompt template "openllama-completion" written 5:14PM DBG Prompt template "openllama-chat" written 5:14PM DBG Written config file /models/gpt-3.5-turbo.yaml ``` LocalAI will download automatically the OpenLLaMa model and run with GPU. Wait for the download to complete. You can also avoid automatic download of the model by not specifying a `PRELOAD_MODELS` variable. For compatible models with GPU support see the [model compatibility table]({{%relref "model-compatibility" %}}). To test that the API is working run in another terminal: ``` curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "What is an alpaca?"}], "temperature": 0.1 }' ``` And if the GPU inferencing is working, you should be able to see something like: ``` 5:22PM DBG Loading model in memory from file: /models/open-llama-7b-q4_0.bin ggml_init_cublas: found 1 CUDA devices: Device 0: Tesla T4 llama.cpp: loading model from /models/open-llama-7b-q4_0.bin llama_model_load_internal: format = ggjt v3 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 1024 llama_model_load_internal: n_embd = 4096 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 32 llama_model_load_internal: n_layer = 32 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 2 (mostly Q4_0) llama_model_load_internal: n_ff = 11008 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 7B llama_model_load_internal: ggml ctx size = 0.07 MB llama_model_load_internal: using CUDA for GPU acceleration llama_model_load_internal: mem required = 4321.77 MB (+ 1026.00 MB per state) llama_model_load_internal: allocating batch_size x 1 MB = 512 MB VRAM for the scratch buffer llama_model_load_internal: offloading 10 repeating layers to GPU llama_model_load_internal: offloaded 10/35 layers to GPU llama_model_load_internal: total VRAM used: 1598 MB ................................................................................................... llama_init_from_file: kv self size = 512.00 MB ``` {{% notice note %}} When enabling GPU inferencing, set the number of GPU layers to offload with: `gpu_layers: 1` to your YAML model config file and `f16: true`. You might also need to set `low_vram: true` if the device has low VRAM. {{% /notice %}} ### Run LocalAI in Kubernetes LocalAI can be installed inside Kubernetes with helm. Requirements: - SSD storage class, or disable `mmap` to load the whole model in memory
By default, the helm chart will install LocalAI instance using the ggml-gpt4all-j model without persistent storage. 1. Add the helm repo ```bash helm repo add go-skynet https://go-skynet.github.io/helm-charts/ ``` 2. Install the helm chart: ```bash helm repo update helm install local-ai go-skynet/local-ai -f values.yaml ``` > **Note:** For further configuration options, see the [helm chart repository on GitHub](https://github.com/go-skynet/helm-charts). ### Example values Deploy a single LocalAI pod with 6GB of persistent storage serving up a `ggml-gpt4all-j` model with custom prompt. ```yaml ### values.yaml replicaCount: 1 deployment: image: quay.io/go-skynet/local-ai:latest ##(This is for CPU only, to use GPU change it to a image that supports GPU IE "v1.40.0-cublas-cuda12") env: threads: 4 context_size: 512 modelsPath: "/models" resources: {} # We usually recommend not to specify default resources and to leave this as a conscious # choice for the user. This also increases chances charts run on environments with little # resources, such as Minikube. If you do want to specify resources, uncomment the following # lines, adjust them as necessary, and remove the curly braces after 'resources:'. # limits: # cpu: 100m # memory: 128Mi # requests: # cpu: 100m # memory: 128Mi # Prompt templates to include # Note: the keys of this map will be the names of the prompt template files promptTemplates: {} # ggml-gpt4all-j.tmpl: | # The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response. # ### Prompt: # {{.Input}} # ### Response: # Models to download at runtime models: # Whether to force download models even if they already exist forceDownload: false # The list of URLs to download models from # Note: the name of the file will be the name of the loaded model list: - url: "https://gpt4all.io/models/ggml-gpt4all-j.bin" # basicAuth: base64EncodedCredentials # Persistent storage for models and prompt templates. # PVC and HostPath are mutually exclusive. If both are enabled, # PVC configuration takes precedence. If neither are enabled, ephemeral # storage is used. persistence: pvc: enabled: false size: 6Gi accessModes: - ReadWriteOnce annotations: {} # Optional storageClass: ~ hostPath: enabled: false path: "/models" service: type: ClusterIP port: 80 annotations: {} # If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout # service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200" ingress: enabled: false className: "" annotations: {} # kubernetes.io/ingress.class: nginx # kubernetes.io/tls-acme: "true" hosts: - host: chart-example.local paths: - path: / pathType: ImplementationSpecific tls: [] # - secretName: chart-example-tls # hosts: # - chart-example.local nodeSelector: {} tolerations: [] affinity: {} ```
### Build from source See the [build section]({{%relref "build" %}}). ### Other examples ![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png) To see other examples on how to integrate with other projects for instance for question answering or for using it with chatbot-ui, see: [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/). ### Clients OpenAI clients are already compatible with LocalAI by overriding the basePath, or the target URL. ## Javascript
https://github.com/openai/openai-node/ ```javascript import { Configuration, OpenAIApi } from 'openai'; const configuration = new Configuration({ basePath: `http://localhost:8080/v1` }); const openai = new OpenAIApi(configuration); ```
## Python
https://github.com/openai/openai-python Set the `OPENAI_API_BASE` environment variable, or by code: ```python import openai openai.api_base = "http://localhost:8080/v1" # create a chat completion chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}]) # print the completion print(completion.choices[0].message.content) ```