#!/usr/bin/env python3 import grpc from concurrent import futures import time import backend_pb2 import backend_pb2_grpc import argparse import signal import sys import os # import diffusers import torch from torch import autocast from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler from diffusers.pipelines.stable_diffusion import safety_checker from compel import Compel from PIL import Image from io import BytesIO from diffusers import StableDiffusionImg2ImgPipeline from transformers import CLIPTextModel from enum import Enum from collections import defaultdict from safetensors.torch import load_file _ONE_DAY_IN_SECONDS = 60 * 60 * 24 COMPEL=os.environ.get("COMPEL", "1") == "1" CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1" # https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287 def sc(self, clip_input, images) : return images, [False for i in images] # edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values safety_checker.StableDiffusionSafetyChecker.forward = sc from diffusers.schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, ) # The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39 # Credits to https://github.com/neggles # See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111 class DiffusionScheduler(str, Enum): ddim = "ddim" # DDIM pndm = "pndm" # PNDM heun = "heun" # Heun unipc = "unipc" # UniPC euler = "euler" # Euler euler_a = "euler_a" # Euler a lms = "lms" # LMS k_lms = "k_lms" # LMS Karras dpm_2 = "dpm_2" # DPM2 k_dpm_2 = "k_dpm_2" # DPM2 Karras dpm_2_a = "dpm_2_a" # DPM2 a k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras dpmpp_2m = "dpmpp_2m" # DPM++ 2M k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras dpmpp_sde = "dpmpp_sde" # DPM++ SDE k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras def get_scheduler(name: str, config: dict = {}): is_karras = name.startswith("k_") if is_karras: # strip the k_ prefix and add the karras sigma flag to config name = name.lstrip("k_") config["use_karras_sigmas"] = True if name == DiffusionScheduler.ddim: sched_class = DDIMScheduler elif name == DiffusionScheduler.pndm: sched_class = PNDMScheduler elif name == DiffusionScheduler.heun: sched_class = HeunDiscreteScheduler elif name == DiffusionScheduler.unipc: sched_class = UniPCMultistepScheduler elif name == DiffusionScheduler.euler: sched_class = EulerDiscreteScheduler elif name == DiffusionScheduler.euler_a: sched_class = EulerAncestralDiscreteScheduler elif name == DiffusionScheduler.lms: sched_class = LMSDiscreteScheduler elif name == DiffusionScheduler.dpm_2: # Equivalent to DPM2 in K-Diffusion sched_class = KDPM2DiscreteScheduler elif name == DiffusionScheduler.dpm_2_a: # Equivalent to `DPM2 a`` in K-Diffusion sched_class = KDPM2AncestralDiscreteScheduler elif name == DiffusionScheduler.dpmpp_2m: # Equivalent to `DPM++ 2M` in K-Diffusion sched_class = DPMSolverMultistepScheduler config["algorithm_type"] = "dpmsolver++" config["solver_order"] = 2 elif name == DiffusionScheduler.dpmpp_sde: # Equivalent to `DPM++ SDE` in K-Diffusion sched_class = DPMSolverSinglestepScheduler elif name == DiffusionScheduler.dpmpp_2m_sde: # Equivalent to `DPM++ 2M SDE` in K-Diffusion sched_class = DPMSolverMultistepScheduler config["algorithm_type"] = "sde-dpmsolver++" else: raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'") return sched_class.from_config(config) # Implement the BackendServicer class with the service methods class BackendServicer(backend_pb2_grpc.BackendServicer): def Health(self, request, context): return backend_pb2.Reply(message=bytes("OK", 'utf-8')) def LoadModel(self, request, context): try: print(f"Loading model {request.Model}...", file=sys.stderr) print(f"Request {request}", file=sys.stderr) torchType = torch.float32 if request.F16Memory: torchType = torch.float16 local = False modelFile = request.Model cfg_scale = 7 if request.CFGScale != 0: cfg_scale = request.CFGScale clipmodel = "runwayml/stable-diffusion-v1-5" if request.CLIPModel != "": clipmodel = request.CLIPModel clipsubfolder = "text_encoder" if request.CLIPSubfolder != "": clipsubfolder = request.CLIPSubfolder # Check if ModelFile exists if request.ModelFile != "": if os.path.exists(request.ModelFile): local = True modelFile = request.ModelFile fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local if request.IMG2IMG and request.PipelineType == "": request.PipelineType == "StableDiffusionImg2ImgPipeline" if request.PipelineType == "": request.PipelineType == "StableDiffusionPipeline" ## img2img if request.PipelineType == "StableDiffusionImg2ImgPipeline": if fromSingleFile: self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile, torch_dtype=torchType, guidance_scale=cfg_scale) else: self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model, torch_dtype=torchType, guidance_scale=cfg_scale) if request.PipelineType == "StableDiffusionDepth2ImgPipeline": self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model, torch_dtype=torchType, guidance_scale=cfg_scale) ## text2img if request.PipelineType == "StableDiffusionPipeline": if fromSingleFile: self.pipe = StableDiffusionPipeline.from_single_file(modelFile, torch_dtype=torchType, guidance_scale=cfg_scale) else: self.pipe = StableDiffusionPipeline.from_pretrained(request.Model, torch_dtype=torchType, guidance_scale=cfg_scale) if request.PipelineType == "DiffusionPipeline": self.pipe = DiffusionPipeline.from_pretrained(request.Model, torch_dtype=torchType, guidance_scale=cfg_scale) if request.PipelineType == "StableDiffusionXLPipeline": if fromSingleFile: self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile, torch_dtype=torchType, use_safetensors=True, guidance_scale=cfg_scale) else: self.pipe = StableDiffusionXLPipeline.from_pretrained( request.Model, torch_dtype=torchType, use_safetensors=True, # variant="fp16" guidance_scale=cfg_scale) # https://github.com/huggingface/diffusers/issues/4446 # do not use text_encoder in the constructor since then # https://github.com/huggingface/diffusers/issues/3212#issuecomment-1521841481 if CLIPSKIP and request.CLIPSkip != 0: text_encoder = CLIPTextModel.from_pretrained(clipmodel, num_hidden_layers=request.CLIPSkip, subfolder=clipsubfolder, torch_dtype=torchType) self.pipe.text_encoder=text_encoder # torch_dtype needs to be customized. float16 for GPU, float32 for CPU # TODO: this needs to be customized if request.SchedulerType != "": self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config) self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder) if request.CUDA: self.pipe.to('cuda') # Assume directory from request.ModelFile. # Only if request.LoraAdapter it's not an absolute path if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter: # get base path of modelFile modelFileBase = os.path.dirname(request.ModelFile) # modify LoraAdapter to be relative to modelFileBase request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter) if request.LoraAdapter: device = "cpu" if not request.CUDA else "cuda" # Check if its a local file and not a directory ( we load lora differently for a safetensor file ) if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter): self.load_lora_weights(request.LoraAdapter, 1, device, torchType) else: self.pipe.unet.load_attn_procs(request.LoraAdapter) except Exception as err: return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") # Implement your logic here for the LoadModel service # Replace this with your desired response return backend_pb2.Result(message="Model loaded successfully", success=True) # https://github.com/huggingface/diffusers/issues/3064 def load_lora_weights(self, checkpoint_path, multiplier, device, dtype): LORA_PREFIX_UNET = "lora_unet" LORA_PREFIX_TEXT_ENCODER = "lora_te" # load LoRA weight from .safetensors state_dict = load_file(checkpoint_path, device=device) updates = defaultdict(dict) for key, value in state_dict.items(): # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" layer, elem = key.split('.', 1) updates[layer][elem] = value # directly update weight in diffusers model for layer, elems in updates.items(): if "text" in layer: layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") curr_layer = self.pipe.text_encoder else: layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_") curr_layer = self.pipe.unet # find the target layer temp_name = layer_infos.pop(0) while len(layer_infos) > -1: try: curr_layer = curr_layer.__getattr__(temp_name) if len(layer_infos) > 0: temp_name = layer_infos.pop(0) elif len(layer_infos) == 0: break except Exception: if len(temp_name) > 0: temp_name += "_" + layer_infos.pop(0) else: temp_name = layer_infos.pop(0) # get elements for this layer weight_up = elems['lora_up.weight'].to(dtype) weight_down = elems['lora_down.weight'].to(dtype) alpha = elems['alpha'] if alpha: alpha = alpha.item() / weight_up.shape[1] else: alpha = 1.0 # update weight if len(weight_up.shape) == 4: curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) else: curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down) def GenerateImage(self, request, context): prompt = request.positive_prompt # create a dictionary of values for the parameters options = { "negative_prompt": request.negative_prompt, "width": request.width, "height": request.height, "num_inference_steps": request.step, } if request.src != "": image = Image.open(request.src) options["image"] = image # Get the keys that we will build the args for our pipe for keys = options.keys() if request.EnableParameters != "": keys = request.EnableParameters.split(",") if request.EnableParameters == "none": keys = [] # create a dictionary of parameters by using the keys from EnableParameters and the values from defaults kwargs = {key: options[key] for key in keys} image = {} if COMPEL: conditioning = self.compel.build_conditioning_tensor(prompt) kwargs["prompt_embeds"]= conditioning # pass the kwargs dictionary to the self.pipe method image = self.pipe( **kwargs ).images[0] else: # pass the kwargs dictionary to the self.pipe method image = self.pipe( prompt, **kwargs ).images[0] # save the result image.save(request.dst) return backend_pb2.Result(message="Model loaded successfully", success=True) def serve(address): server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) server.add_insecure_port(address) server.start() print("Server started. Listening on: " + address, file=sys.stderr) # Define the signal handler function def signal_handler(sig, frame): print("Received termination signal. Shutting down...") server.stop(0) sys.exit(0) # Set the signal handlers for SIGINT and SIGTERM signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the gRPC server.") parser.add_argument( "--addr", default="localhost:50051", help="The address to bind the server to." ) args = parser.parse_args() serve(args.addr)