package openai import ( "encoding/json" "fmt" "time" "github.com/mudler/LocalAI/core/backend" "github.com/mudler/LocalAI/core/config" "github.com/mudler/LocalAI/pkg/model" "github.com/google/uuid" "github.com/mudler/LocalAI/core/schema" "github.com/gofiber/fiber/v2" "github.com/rs/zerolog/log" ) // EmbeddingsEndpoint is the OpenAI Embeddings API endpoint https://platform.openai.com/docs/api-reference/embeddings // @Summary Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms. // @Param request body schema.OpenAIRequest true "query params" // @Success 200 {object} schema.OpenAIResponse "Response" // @Router /v1/embeddings [post] func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error { return func(c *fiber.Ctx) error { model, input, err := readRequest(c, ml, appConfig, true) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } config, input, err := mergeRequestWithConfig(model, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } log.Debug().Msgf("Parameter Config: %+v", config) items := []schema.Item{} for i, s := range config.InputToken { // get the model function to call for the result embedFn, err := backend.ModelEmbedding("", s, ml, *config, appConfig) if err != nil { return err } embeddings, err := embedFn() if err != nil { return err } items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"}) } for i, s := range config.InputStrings { // get the model function to call for the result embedFn, err := backend.ModelEmbedding(s, []int{}, ml, *config, appConfig) if err != nil { return err } embeddings, err := embedFn() if err != nil { return err } items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"}) } id := uuid.New().String() created := int(time.Now().Unix()) resp := &schema.OpenAIResponse{ ID: id, Created: created, Model: input.Model, // we have to return what the user sent here, due to OpenAI spec. Data: items, Object: "list", } jsonResult, _ := json.Marshal(resp) log.Debug().Msgf("Response: %s", jsonResult) // Return the prediction in the response body return c.JSON(resp) } }