---
config_file: |
  mmap: true
  backend: llama-cpp
  template:
    chat_message: |
      <|im_{{if eq .RoleName "assistant"}}bot{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}|>
      {{- if .FunctionCall }}
      <tool_call>
      {{- else if eq .RoleName "tool" }}
      <tool_response>
      {{- end }}
      {{- if .Content}}
      {{.Content }}
      {{- end }}
      {{- if .FunctionCall}}
      {{toJson .FunctionCall}}
      {{- end }}
      {{- if .FunctionCall }}
      </tool_call>
      {{- else if eq .RoleName "tool" }}
      </tool_response>
      {{- end }}<|im_end|>
    # https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
    function: |
      <|im_system|>
      You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
      <tools>
      {{range .Functions}}
      {'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
      {{end}}
      </tools>
      Use the following pydantic model json schema for each tool call you will make:
      {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
      For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
      <tool_call>
      {'arguments': <args-dict>, 'name': <function-name>}
      </tool_call><|im_end|>
      {{.Input -}}
      <|im_bot|>
      <tool_call>
    chat: |
      {{.Input -}}
      <|im_bot|>
    completion: |
      {{.Input}}
  context_size: 4096
  f16: true
  stopwords:
  - <|im_end|>
  - <dummy32000>
  - "\n</tool_call>"
  - "\n\n\n"