package openai import ( "encoding/json" "fmt" "time" "github.com/mudler/LocalAI/core/backend" "github.com/mudler/LocalAI/core/config" "github.com/gofiber/fiber/v2" "github.com/google/uuid" "github.com/mudler/LocalAI/core/schema" model "github.com/mudler/LocalAI/pkg/model" "github.com/rs/zerolog/log" ) func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error { return func(c *fiber.Ctx) error { modelFile, input, err := readRequest(c, ml, appConfig, true) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } log.Debug().Msgf("Parameter Config: %+v", config) templateFile := "" // A model can have a "file.bin.tmpl" file associated with a prompt template prefix if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) { templateFile = config.Model } if config.TemplateConfig.Edit != "" { templateFile = config.TemplateConfig.Edit } var result []schema.Choice totalTokenUsage := backend.TokenUsage{} for _, i := range config.InputStrings { if templateFile != "" { templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{ Input: i, Instruction: input.Instruction, SystemPrompt: config.SystemPrompt, }) if err == nil { i = templatedInput log.Debug().Msgf("Template found, input modified to: %s", i) } } r, tokenUsage, err := ComputeChoices(input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) { *c = append(*c, schema.Choice{Text: s}) }, nil) if err != nil { return err } totalTokenUsage.Prompt += tokenUsage.Prompt totalTokenUsage.Completion += tokenUsage.Completion result = append(result, r...) } id := uuid.New().String() created := int(time.Now().Unix()) resp := &schema.OpenAIResponse{ ID: id, Created: created, Model: input.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: result, Object: "edit", Usage: schema.OpenAIUsage{ PromptTokens: totalTokenUsage.Prompt, CompletionTokens: totalTokenUsage.Completion, TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion, }, } jsonResult, _ := json.Marshal(resp) log.Debug().Msgf("Response: %s", jsonResult) // Return the prediction in the response body return c.JSON(resp) } }