package backend import ( "github.com/mudler/LocalAI/core/config" "github.com/mudler/LocalAI/core/schema" "github.com/mudler/LocalAI/pkg/grpc" model "github.com/mudler/LocalAI/pkg/model" ) func ModelTokenize(s string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (schema.TokenizeResponse, error) { modelFile := backendConfig.Model grpcOpts := GRPCModelOpts(backendConfig) var inferenceModel grpc.Backend var err error opts := modelOpts(backendConfig, appConfig, []model.Option{ model.WithLoadGRPCLoadModelOpts(grpcOpts), model.WithThreads(uint32(*backendConfig.Threads)), model.WithAssetDir(appConfig.AssetsDestination), model.WithModel(modelFile), model.WithContext(appConfig.Context), }) if backendConfig.Backend == "" { inferenceModel, err = loader.GreedyLoader(opts...) } else { opts = append(opts, model.WithBackendString(backendConfig.Backend)) inferenceModel, err = loader.BackendLoader(opts...) } if err != nil { return schema.TokenizeResponse{}, err } predictOptions := gRPCPredictOpts(backendConfig, loader.ModelPath) predictOptions.Prompt = s // tokenize the string resp, err := inferenceModel.TokenizeString(appConfig.Context, predictOptions) if err != nil { return schema.TokenizeResponse{}, err } return schema.TokenizeResponse{ Tokens: resp.Tokens, }, nil }