+++ disableToc = false title = "Advanced" weight = 6 +++ ### Advanced configuration with YAML files In order to define default prompts, model parameters (such as custom default `top_p` or `top_k`), LocalAI can be configured to serve user-defined models with a set of default parameters and templates. You can create multiple `yaml` files in the models path or either specify a single YAML configuration file. Consider the following `models` folder in the `example/chatbot-ui`: ``` base ❯ ls -liah examples/chatbot-ui/models 36487587 drwxr-xr-x 2 mudler mudler 4.0K May 3 12:27 . 36487586 drwxr-xr-x 3 mudler mudler 4.0K May 3 10:42 .. 36465214 -rw-r--r-- 1 mudler mudler 10 Apr 27 07:46 completion.tmpl 36464855 -rw-r--r-- 1 mudler mudler ?G Apr 27 00:08 luna-ai-llama2-uncensored.ggmlv3.q5_K_M.bin 36464537 -rw-r--r-- 1 mudler mudler 245 May 3 10:42 gpt-3.5-turbo.yaml 36467388 -rw-r--r-- 1 mudler mudler 180 Apr 27 07:46 chat.tmpl ``` In the `gpt-3.5-turbo.yaml` file it is defined the `gpt-3.5-turbo` model which is an alias to use `luna-ai-llama2` with pre-defined options. For instance, consider the following that declares `gpt-3.5-turbo` backed by the `luna-ai-llama2` model: ```yaml name: gpt-3.5-turbo # Default model parameters parameters: # Relative to the models path model: luna-ai-llama2-uncensored.ggmlv3.q5_K_M.bin # temperature temperature: 0.3 # all the OpenAI request options here.. # Default context size context_size: 512 threads: 10 # Define a backend (optional). By default it will try to guess the backend the first time the model is interacted with. backend: llama-stable # available: llama, stablelm, gpt2, gptj rwkv # Enable prompt caching prompt_cache_path: "alpaca-cache" prompt_cache_all: true # stopwords (if supported by the backend) stopwords: - "HUMAN:" - "### Response:" # define chat roles roles: assistant: '### Response:' system: '### System Instruction:' user: '### Instruction:' template: # template file ".tmpl" with the prompt template to use by default on the endpoint call. Note there is no extension in the files completion: completion chat: chat ``` Specifying a `config-file` via CLI allows to declare models in a single file as a list, for instance: ```yaml - name: list1 parameters: model: testmodel context_size: 512 threads: 10 stopwords: - "HUMAN:" - "### Response:" roles: user: "HUMAN:" system: "GPT:" template: completion: completion chat: chat - name: list2 parameters: model: testmodel context_size: 512 threads: 10 stopwords: - "HUMAN:" - "### Response:" roles: user: "HUMAN:" system: "GPT:" template: completion: completion chat: chat ``` See also [chatbot-ui](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) as an example on how to use config files. ### Full config model file reference ```yaml # Model name. # The model name is used to identify the model in the API calls. name: gpt-3.5-turbo # Default model parameters. # These options can also be specified in the API calls parameters: # Relative to the models path model: luna-ai-llama2-uncensored.ggmlv3.q5_K_M.bin # temperature temperature: 0.3 # all the OpenAI request options here.. top_k: top_p: max_tokens: ignore_eos: true n_keep: 10 seed: mode: step: negative_prompt: typical_p: tfz: frequency_penalty: mirostat_eta: mirostat_tau: mirostat: rope_freq_base: rope_freq_scale: negative_prompt_scale: # Default context size context_size: 512 # Default number of threads threads: 10 # Define a backend (optional). By default it will try to guess the backend the first time the model is interacted with. backend: llama-stable # available: llama, stablelm, gpt2, gptj rwkv # stopwords (if supported by the backend) stopwords: - "HUMAN:" - "### Response:" # string to trim space to trimspace: - string # Strings to cut from the response cutstrings: - "string" # Directory used to store additional assets asset_dir: "" # define chat roles roles: user: "HUMAN:" system: "GPT:" assistant: "ASSISTANT:" template: # template file ".tmpl" with the prompt template to use by default on the endpoint call. Note there is no extension in the files completion: completion chat: chat edit: edit_template function: function_template function: disable_no_action: true no_action_function_name: "reply" no_action_description_name: "Reply to the AI assistant" system_prompt: rms_norm_eps: # Set it to 8 for llama2 70b ngqa: 1 ## LLAMA specific options # Enable F16 if backend supports it f16: true # Enable debugging debug: true # Enable embeddings embeddings: true # Mirostat configuration (llama.cpp only) mirostat_eta: 0.8 mirostat_tau: 0.9 mirostat: 1 # GPU Layers (only used when built with cublas) gpu_layers: 22 # Enable memory lock mmlock: true # GPU setting to split the tensor in multiple parts and define a main GPU # see llama.cpp for usage tensor_split: "" main_gpu: "" # Define a prompt cache path (relative to the models) prompt_cache_path: "prompt-cache" # Cache all the prompts prompt_cache_all: true # Read only prompt_cache_ro: false # Enable mmap mmap: true # Enable low vram mode (GPU only) low_vram: true # Set NUMA mode (CPU only) numa: true # Lora settings lora_adapter: "/path/to/lora/adapter" lora_base: "/path/to/lora/base" # Disable mulmatq (CUDA) no_mulmatq: true # Diffusers/transformers cuda: true ``` ### Prompt templates The API doesn't inject a default prompt for talking to the model. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release.
You can use a default template for every model present in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibling file, `foo.bin.tmpl` which will be used as a default prompt and can be used with alpaca: ``` The below instruction describes a task. Write a response that appropriately completes the request. ### Instruction: {{.Input}} ### Response: ``` See the [prompt-templates](https://github.com/go-skynet/LocalAI/tree/master/prompt-templates) directory in this repository for templates for some of the most popular models. For the edit endpoint, an example template for alpaca-based models can be: ```yaml Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {{.Instruction}} ### Input: {{.Input}} ### Response: ```
### Install models using the API Instead of installing models manually, you can use the LocalAI API endpoints and a model definition to install programmatically via API models in runtime. A curated collection of model files is in the [model-gallery](https://github.com/go-skynet/model-gallery) (work in progress!). The files of the model gallery are different from the model files used to configure LocalAI models. The model gallery files contains information about the model setup, and the files necessary to run the model locally. To install for example `lunademo`, you can send a POST call to the `/models/apply` endpoint with the model definition url (`url`) and the name of the model should have in LocalAI (`name`, optional): ```bash curl --location 'http://localhost:8080/models/apply' \ --header 'Content-Type: application/json' \ --data-raw '{ "id": "TheBloke/Luna-AI-Llama2-Uncensored-GGML/luna-ai-llama2-uncensored.ggmlv3.q5_K_M.bin", "name": "lunademo" }' ``` ### Preloading models during startup In order to allow the API to start-up with all the needed model on the first-start, the model gallery files can be used during startup. ```bash PRELOAD_MODELS='[{"url": "https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml","name": "gpt4all-j"}]' local-ai ``` `PRELOAD_MODELS` (or `--preload-models`) takes a list in JSON with the same parameter of the API calls of the `/models/apply` endpoint. Similarly it can be specified a path to a YAML configuration file containing a list of models with `PRELOAD_MODELS_CONFIG` ( or `--preload-models-config` ): ```yaml - url: https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml name: gpt4all-j # ... ``` ### Automatic prompt caching LocalAI can automatically cache prompts for faster loading of the prompt. This can be useful if your model need a prompt template with prefixed text in the prompt before the input. To enable prompt caching, you can control the settings in the model config YAML file: ```yaml # Enable prompt caching prompt_cache_path: "cache" prompt_cache_all: true ``` `prompt_cache_path` is relative to the models folder. you can enter here a name for the file that will be automatically create during the first load if `prompt_cache_all` is set to `true`. ### Configuring a specific backend for the model By default LocalAI will try to autoload the model by trying all the backends. This might work for most of models, but some of the backends are NOT configured to autoload. The available backends are listed in the [model compatibility table]({{%relref "model-compatibility" %}}). In order to specify a backend for your models, create a model config file in your `models` directory specifying the backend: ```yaml name: gpt-3.5-turbo # Default model parameters parameters: # Relative to the models path model: ... backend: llama-stable # ... ``` ### Connect external backends LocalAI backends are internally implemented using `gRPC` services. This also allows `LocalAI` to connect to external `gRPC` services on start and extend LocalAI functionalities via third-party binaries. The `--external-grpc-backends` parameter in the CLI can be used either to specify a local backend (a file) or a remote URL. The syntax is `:`. Once LocalAI is started with it, the new backend name will be available for all the API endpoints. So for instance, to register a new backend which is a local file: ``` ./local-ai --debug --external-grpc-backends "my-awesome-backend:/path/to/my/backend.py" ``` Or a remote URI: ``` ./local-ai --debug --external-grpc-backends "my-awesome-backend:host:port" ``` ### Environment variables When LocalAI runs in a container, there are additional environment variables available that modify the behavior of LocalAI on startup: | Environment variable | Default | Description | |----------------------------|---------|------------------------------------------------------------------------------------------------------------| | `REBUILD` | `false` | Rebuild LocalAI on startup | | `BUILD_TYPE` | | Build type. Available: `cublas`, `openblas`, `clblas` | | `GO_TAGS` | | Go tags. Available: `stablediffusion` | | `HUGGINGFACEHUB_API_TOKEN` | | Special token for interacting with HuggingFace Inference API, required only when using the `langchain-huggingface` backend | | `EXTRA_BACKENDS` | | A space separated list of backends to prepare. For example `EXTRA_BACKENDS="backend/python/diffusers backend/python/transformers"` prepares the conda environment on start | Here is how to configure these variables: ```bash # Option 1: command line docker run --env REBUILD=true localai # Option 2: set within an env file docker run --env-file .env localai ``` ### Build only a single backend You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only: ```bash make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build ``` By default, all the backends are built. ### Extra backends LocalAI can be extended with extra backends. The backends are implemented as `gRPC` services and can be written in any language. The container images that are built and published on [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags) contain a set of images split in core and extra. By default Images bring all the dependencies and backends supported by LocalAI (we call those `extra` images). The `-core` images instead bring only the strictly necessary dependencies to run LocalAI without only a core set of backends. If you wish to build a custom container image with extra backends, you can use the core images and build only the backends you are interested into or prepare the environment on startup by using the `EXTRA_BACKENDS` environment variable. For instance, to use the diffusers backend: ```Dockerfile FROM quay.io/go-skynet/local-ai:master-ffmpeg-core RUN PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers ``` Remember also to set the `EXTERNAL_GRPC_BACKENDS` environment variable (or `--external-grpc-backends` as CLI flag) to point to the backends you are using (`EXTERNAL_GRPC_BACKENDS="backend_name:/path/to/backend"`), for example with diffusers: ```Dockerfile FROM quay.io/go-skynet/local-ai:master-ffmpeg-core RUN PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers ENV EXTERNAL_GRPC_BACKENDS="diffusers:/build/backend/python/diffusers/run.sh" ``` {{% notice note %}} You can specify remote external backends or path to local files. The syntax is `backend-name:/path/to/backend` or `backend-name:host:port`. {{% /notice %}} #### In runtime When using the `-core` container image it is possible to prepare the python backends you are interested into by using the `EXTRA_BACKENDS` variable, for instance: ```bash docker run --env EXTRA_BACKENDS="backend/python/diffusers" quay.io/go-skynet/local-ai:master-ffmpeg-core ```