#!/usr/bin/env python3 import grpc from concurrent import futures import time import backend_pb2 import backend_pb2_grpc import argparse import signal import sys import os, glob from pathlib import Path import torch import torch.nn.functional as F from torch import version as torch_version from source.tokenizer import ExLlamaTokenizer from source.generator import ExLlamaGenerator from source.model import ExLlama, ExLlamaCache, ExLlamaConfig _ONE_DAY_IN_SECONDS = 60 * 60 * 24 # If MAX_WORKERS are specified in the environment use it, otherwise default to 1 MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) # Implement the BackendServicer class with the service methods class BackendServicer(backend_pb2_grpc.BackendServicer): def generate(self,prompt, max_new_tokens): self.generator.end_beam_search() # Tokenizing the input ids = self.generator.tokenizer.encode(prompt) self.generator.gen_begin_reuse(ids) initial_len = self.generator.sequence[0].shape[0] has_leading_space = False decoded_text = '' for i in range(max_new_tokens): token = self.generator.gen_single_token() if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): has_leading_space = True decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) if has_leading_space: decoded_text = ' ' + decoded_text if token.item() == self.generator.tokenizer.eos_token_id: break return decoded_text def Health(self, request, context): return backend_pb2.Reply(message=bytes("OK", 'utf-8')) def LoadModel(self, request, context): try: # https://github.com/turboderp/exllama/blob/master/example_cfg.py model_directory = request.ModelFile # Locate files we need within that directory tokenizer_path = os.path.join(model_directory, "tokenizer.model") model_config_path = os.path.join(model_directory, "config.json") st_pattern = os.path.join(model_directory, "*.safetensors") model_path = glob.glob(st_pattern)[0] # Create config, model, tokenizer and generator config = ExLlamaConfig(model_config_path) # create config from config.json config.model_path = model_path # supply path to model weights file if (request.ContextSize): config.max_seq_len = request.ContextSize # override max sequence length config.max_attention_size = request.ContextSize**2 # Should be set to context_size^2. # https://github.com/turboderp/exllama/issues/220#issuecomment-1720324163 # Set Rope scaling. if (request.RopeFreqScale): # Alpha value for Rope scaling. # Higher value increases context but adds perplexity. # alpha_value and compress_pos_emb are mutually exclusive. # https://github.com/turboderp/exllama/issues/115 config.alpha_value = request.RopeFreqScale config.calculate_rotary_embedding_base() model = ExLlama(config) # create ExLlama instance and load the weights tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file cache = ExLlamaCache(model, batch_size = 2) # create cache for inference generator = ExLlamaGenerator(model, tokenizer, cache) # create generator self.generator= generator self.model = model self.tokenizer = tokenizer self.cache = cache except Exception as err: return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") return backend_pb2.Result(message="Model loaded successfully", success=True) def Predict(self, request, context): penalty = 1.15 if request.Penalty != 0.0: penalty = request.Penalty self.generator.settings.token_repetition_penalty_max = penalty self.generator.settings.temperature = request.Temperature self.generator.settings.top_k = request.TopK self.generator.settings.top_p = request.TopP tokens = 512 if request.Tokens != 0: tokens = request.Tokens if self.cache.batch_size == 1: del self.cache self.cache = ExLlamaCache(self.model, batch_size=2) self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) t = self.generate(request.Prompt, tokens) # Remove prompt from response if present if request.Prompt in t: t = t.replace(request.Prompt, "") return backend_pb2.Result(message=bytes(t, encoding='utf-8')) def PredictStream(self, request, context): # Implement PredictStream RPC #for reply in some_data_generator(): # yield reply # Not implemented yet return self.Predict(request, context) def serve(address): server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) server.add_insecure_port(address) server.start() print("Server started. Listening on: " + address, file=sys.stderr) # Define the signal handler function def signal_handler(sig, frame): print("Received termination signal. Shutting down...") server.stop(0) sys.exit(0) # Set the signal handlers for SIGINT and SIGTERM signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the gRPC server.") parser.add_argument( "--addr", default="localhost:50051", help="The address to bind the server to." ) args = parser.parse_args() serve(args.addr)