package openai import ( "bufio" "bytes" "encoding/json" "fmt" "strings" "time" "github.com/go-skynet/LocalAI/api/backend" config "github.com/go-skynet/LocalAI/api/config" "github.com/go-skynet/LocalAI/api/options" "github.com/go-skynet/LocalAI/api/schema" "github.com/go-skynet/LocalAI/pkg/grammar" model "github.com/go-skynet/LocalAI/pkg/model" "github.com/go-skynet/LocalAI/pkg/utils" "github.com/gofiber/fiber/v2" "github.com/google/uuid" "github.com/rs/zerolog/log" "github.com/valyala/fasthttp" ) func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error { emptyMessage := "" id := uuid.New().String() created := int(time.Now().Unix()) process := func(s string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) { initialMessage := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}}, Object: "chat.completion.chunk", } responses <- initialMessage ComputeChoices(req, s, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool { resp := schema.OpenAIResponse{ ID: id, Created: created, Model: req.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}}, Object: "chat.completion.chunk", Usage: schema.OpenAIUsage{ PromptTokens: usage.Prompt, CompletionTokens: usage.Completion, TotalTokens: usage.Prompt + usage.Completion, }, } responses <- resp return true }) close(responses) } return func(c *fiber.Ctx) error { processFunctions := false funcs := grammar.Functions{} modelFile, input, err := readInput(c, o, true) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } config, input, err := readConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } log.Debug().Msgf("Configuration read: %+v", config) // Allow the user to set custom actions via config file // to be "embedded" in each model noActionName := "answer" noActionDescription := "use this action to answer without performing any action" if config.FunctionsConfig.NoActionFunctionName != "" { noActionName = config.FunctionsConfig.NoActionFunctionName } if config.FunctionsConfig.NoActionDescriptionName != "" { noActionDescription = config.FunctionsConfig.NoActionDescriptionName } if input.ResponseFormat.Type == "json_object" { input.Grammar = grammar.JSONBNF } // process functions if we have any defined or if we have a function call string if len(input.Functions) > 0 && config.ShouldUseFunctions() { log.Debug().Msgf("Response needs to process functions") processFunctions = true noActionGrammar := grammar.Function{ Name: noActionName, Description: noActionDescription, Parameters: map[string]interface{}{ "properties": map[string]interface{}{ "message": map[string]interface{}{ "type": "string", "description": "The message to reply the user with", }}, }, } // Append the no action function funcs = append(funcs, input.Functions...) if !config.FunctionsConfig.DisableNoAction { funcs = append(funcs, noActionGrammar) } // Force picking one of the functions by the request if config.FunctionToCall() != "" { funcs = funcs.Select(config.FunctionToCall()) } // Update input grammar jsStruct := funcs.ToJSONStructure() config.Grammar = jsStruct.Grammar("") } else if input.JSONFunctionGrammarObject != nil { config.Grammar = input.JSONFunctionGrammarObject.Grammar("") } // functions are not supported in stream mode (yet?) toStream := input.Stream && !processFunctions log.Debug().Msgf("Parameters: %+v", config) var predInput string suppressConfigSystemPrompt := false mess := []string{} for messageIndex, i := range input.Messages { var content string role := i.Role // if function call, we might want to customize the role so we can display better that the "assistant called a json action" // if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request if i.FunctionCall != nil && i.Role == "assistant" { roleFn := "assistant_function_call" r := config.Roles[roleFn] if r != "" { role = roleFn } } r := config.Roles[role] contentExists := i.Content != nil && i.StringContent != "" // First attempt to populate content via a chat message specific template if config.TemplateConfig.ChatMessage != "" { chatMessageData := model.ChatMessageTemplateData{ SystemPrompt: config.SystemPrompt, Role: r, RoleName: role, Content: i.StringContent, MessageIndex: messageIndex, } templatedChatMessage, err := o.Loader.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData) if err != nil { log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, config.TemplateConfig.ChatMessage, err) } else { if templatedChatMessage == "" { log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData) continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf } log.Debug().Msgf("templated message for chat: %s", templatedChatMessage) content = templatedChatMessage } } // If this model doesn't have such a template, or if that template fails to return a value, template at the message level. if content == "" { if r != "" { if contentExists { content = fmt.Sprint(r, i.StringContent) } if i.FunctionCall != nil { j, err := json.Marshal(i.FunctionCall) if err == nil { if contentExists { content += "\n" + fmt.Sprint(r, " ", string(j)) } else { content = fmt.Sprint(r, " ", string(j)) } } } } else { if contentExists { content = fmt.Sprint(i.StringContent) } if i.FunctionCall != nil { j, err := json.Marshal(i.FunctionCall) if err == nil { if contentExists { content += "\n" + string(j) } else { content = string(j) } } } } // Special Handling: System. We care if it was printed at all, not the r branch, so check seperately if contentExists && role == "system" { suppressConfigSystemPrompt = true } } mess = append(mess, content) } predInput = strings.Join(mess, "\n") log.Debug().Msgf("Prompt (before templating): %s", predInput) if toStream { log.Debug().Msgf("Stream request received") c.Context().SetContentType("text/event-stream") //c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8) // c.Set("Content-Type", "text/event-stream") c.Set("Cache-Control", "no-cache") c.Set("Connection", "keep-alive") c.Set("Transfer-Encoding", "chunked") } templateFile := config.Model if config.TemplateConfig.Chat != "" && !processFunctions { templateFile = config.TemplateConfig.Chat } if config.TemplateConfig.Functions != "" && processFunctions { templateFile = config.TemplateConfig.Functions } // A model can have a "file.bin.tmpl" file associated with a prompt template prefix templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{ SystemPrompt: config.SystemPrompt, SuppressSystemPrompt: suppressConfigSystemPrompt, Input: predInput, Functions: funcs, }) if err == nil { predInput = templatedInput log.Debug().Msgf("Template found, input modified to: %s", predInput) } else { log.Debug().Msgf("Template failed loading: %s", err.Error()) } log.Debug().Msgf("Prompt (after templating): %s", predInput) if processFunctions { log.Debug().Msgf("Grammar: %+v", config.Grammar) } if toStream { responses := make(chan schema.OpenAIResponse) go process(predInput, input, config, o.Loader, responses) c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) { usage := &schema.OpenAIUsage{} for ev := range responses { usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it var buf bytes.Buffer enc := json.NewEncoder(&buf) enc.Encode(ev) log.Debug().Msgf("Sending chunk: %s", buf.String()) _, err := fmt.Fprintf(w, "data: %v\n", buf.String()) if err != nil { log.Debug().Msgf("Sending chunk failed: %v", err) input.Cancel() break } w.Flush() } resp := &schema.OpenAIResponse{ ID: id, Created: created, Model: input.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: []schema.Choice{ { FinishReason: "stop", Index: 0, Delta: &schema.Message{Content: &emptyMessage}, }}, Object: "chat.completion.chunk", Usage: *usage, } respData, _ := json.Marshal(resp) w.WriteString(fmt.Sprintf("data: %s\n\n", respData)) w.WriteString("data: [DONE]\n\n") w.Flush() })) return nil } result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) { if processFunctions { // As we have to change the result before processing, we can't stream the answer (yet?) ss := map[string]interface{}{} // This prevent newlines to break JSON parsing for clients s = utils.EscapeNewLines(s) json.Unmarshal([]byte(s), &ss) log.Debug().Msgf("Function return: %s %+v", s, ss) // The grammar defines the function name as "function", while OpenAI returns "name" func_name := ss["function"] // Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix) d, _ := json.Marshal(args) ss["arguments"] = string(d) ss["name"] = func_name // if do nothing, reply with a message if func_name == noActionName { log.Debug().Msgf("nothing to do, computing a reply") // If there is a message that the LLM already sends as part of the JSON reply, use it arguments := map[string]interface{}{} json.Unmarshal([]byte(d), &arguments) m, exists := arguments["message"] if exists { switch message := m.(type) { case string: if message != "" { log.Debug().Msgf("Reply received from LLM: %s", message) message = backend.Finetune(*config, predInput, message) log.Debug().Msgf("Reply received from LLM(finetuned): %s", message) *c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &message}}) return } } } log.Debug().Msgf("No action received from LLM, without a message, computing a reply") // Otherwise ask the LLM to understand the JSON output and the context, and return a message // Note: This costs (in term of CPU) another computation config.Grammar = "" images := []string{} for _, m := range input.Messages { images = append(images, m.StringImages...) } predFunc, err := backend.ModelInference(input.Context, predInput, images, o.Loader, *config, o, nil) if err != nil { log.Error().Msgf("inference error: %s", err.Error()) return } prediction, err := predFunc() if err != nil { log.Error().Msgf("inference error: %s", err.Error()) return } fineTunedResponse := backend.Finetune(*config, predInput, prediction.Response) *c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &fineTunedResponse}}) } else { // otherwise reply with the function call *c = append(*c, schema.Choice{ FinishReason: "function_call", Message: &schema.Message{Role: "assistant", FunctionCall: ss}, }) } return } *c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}}) }, nil) if err != nil { return err } resp := &schema.OpenAIResponse{ ID: id, Created: created, Model: input.Model, // we have to return what the user sent here, due to OpenAI spec. Choices: result, Object: "chat.completion", Usage: schema.OpenAIUsage{ PromptTokens: tokenUsage.Prompt, CompletionTokens: tokenUsage.Completion, TotalTokens: tokenUsage.Prompt + tokenUsage.Completion, }, } respData, _ := json.Marshal(resp) log.Debug().Msgf("Response: %s", respData) // Return the prediction in the response body return c.JSON(resp) } }