package openai import ( "bufio" "encoding/base64" "encoding/json" "fmt" "io" "net/http" "os" "path/filepath" "strconv" "strings" "time" "github.com/google/uuid" "github.com/mudler/LocalAI/core/config" "github.com/mudler/LocalAI/core/schema" "github.com/mudler/LocalAI/core/backend" "github.com/gofiber/fiber/v2" model "github.com/mudler/LocalAI/pkg/model" "github.com/rs/zerolog/log" ) func downloadFile(url string) (string, error) { // Get the data resp, err := http.Get(url) if err != nil { return "", err } defer resp.Body.Close() // Create the file out, err := os.CreateTemp("", "image") if err != nil { return "", err } defer out.Close() // Write the body to file _, err = io.Copy(out, resp.Body) return out.Name(), err } // /* * curl http://localhost:8080/v1/images/generations \ -H "Content-Type: application/json" \ -d '{ "prompt": "A cute baby sea otter", "n": 1, "size": "512x512" }' * */ // ImageEndpoint is the OpenAI Image generation API endpoint https://platform.openai.com/docs/api-reference/images/create // @Summary Creates an image given a prompt. // @Param request body schema.OpenAIRequest true "query params" // @Success 200 {object} schema.OpenAIResponse "Response" // @Router /v1/images/generations [post] func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error { return func(c *fiber.Ctx) error { m, input, err := readRequest(c, cl, ml, appConfig, false) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } if m == "" { m = model.StableDiffusionBackend } log.Debug().Msgf("Loading model: %+v", m) config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, 0, 0, false) if err != nil { return fmt.Errorf("failed reading parameters from request:%w", err) } src := "" if input.File != "" { fileData := []byte{} // check if input.File is an URL, if so download it and save it // to a temporary file if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") { out, err := downloadFile(input.File) if err != nil { return fmt.Errorf("failed downloading file:%w", err) } defer os.RemoveAll(out) fileData, err = os.ReadFile(out) if err != nil { return fmt.Errorf("failed reading file:%w", err) } } else { // base 64 decode the file and write it somewhere // that we will cleanup fileData, err = base64.StdEncoding.DecodeString(input.File) if err != nil { return err } } // Create a temporary file outputFile, err := os.CreateTemp(appConfig.ImageDir, "b64") if err != nil { return err } // write the base64 result writer := bufio.NewWriter(outputFile) _, err = writer.Write(fileData) if err != nil { outputFile.Close() return err } outputFile.Close() src = outputFile.Name() defer os.RemoveAll(src) } log.Debug().Msgf("Parameter Config: %+v", config) switch config.Backend { case "stablediffusion": config.Backend = model.StableDiffusionBackend case "tinydream": config.Backend = model.TinyDreamBackend case "": config.Backend = model.StableDiffusionBackend } sizeParts := strings.Split(input.Size, "x") if len(sizeParts) != 2 { return fmt.Errorf("invalid value for 'size'") } width, err := strconv.Atoi(sizeParts[0]) if err != nil { return fmt.Errorf("invalid value for 'size'") } height, err := strconv.Atoi(sizeParts[1]) if err != nil { return fmt.Errorf("invalid value for 'size'") } b64JSON := config.ResponseFormat == "b64_json" // src and clip_skip var result []schema.Item for _, i := range config.PromptStrings { n := input.N if input.N == 0 { n = 1 } for j := 0; j < n; j++ { prompts := strings.Split(i, "|") positive_prompt := prompts[0] negative_prompt := "" if len(prompts) > 1 { negative_prompt = prompts[1] } mode := 0 step := config.Step if step == 0 { step = 15 } if input.Mode != 0 { mode = input.Mode } if input.Step != 0 { step = input.Step } tempDir := "" if !b64JSON { tempDir = appConfig.ImageDir } // Create a temporary file outputFile, err := os.CreateTemp(tempDir, "b64") if err != nil { return err } outputFile.Close() output := outputFile.Name() + ".png" // Rename the temporary file err = os.Rename(outputFile.Name(), output) if err != nil { return err } baseURL := c.BaseURL() fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, src, output, ml, *config, appConfig) if err != nil { return err } if err := fn(); err != nil { return err } item := &schema.Item{} if b64JSON { defer os.RemoveAll(output) data, err := os.ReadFile(output) if err != nil { return err } item.B64JSON = base64.StdEncoding.EncodeToString(data) } else { base := filepath.Base(output) item.URL = baseURL + "/generated-images/" + base } result = append(result, *item) } } id := uuid.New().String() created := int(time.Now().Unix()) resp := &schema.OpenAIResponse{ ID: id, Created: created, Data: result, } jsonResult, _ := json.Marshal(resp) log.Debug().Msgf("Response: %s", jsonResult) // Return the prediction in the response body return c.JSON(resp) } }