--- name: "llama3-instruct" config_file: | mmap: true template: chat_message: | <|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|> {{ if .FunctionCall -}} Function call: {{ else if eq .RoleName "tool" -}} Function response: {{ end -}} {{ if .Content -}} {{.Content -}} {{ else if .FunctionCall -}} {{ toJson .FunctionCall -}} {{ end -}} <|eot_id|> function: | <|start_header_id|>system<|end_header_id|> You are a function calling AI model. You are provided with function signatures within XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: {{range .Functions}} {'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }} {{end}} Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}<|eot_id|><|start_header_id|>assistant<|end_header_id|> Function call: chat: | {{.Input }} <|start_header_id|>assistant<|end_header_id|> completion: | {{.Input}} context_size: 8192 f16: true stopwords: - <|im_end|> - - "<|eot_id|>" - <|end_of_text|>