+++ disableToc = false title = "⚡ GPU acceleration" weight = 2 +++ {{% notice note %}} Section under construction {{% /notice %}} This section contains instruction on how to use LocalAI with GPU acceleration. {{% notice note %}} For accelleration for AMD or Metal HW there are no specific container images, see the [build]({{%relref "build/#acceleration" %}}) {{% /notice %}} ### CUDA(NVIDIA) acceleration Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)) To check what CUDA version do you need, you can either run `nvidia-smi` or `nvcc --version`. Alternatively, you can also check nvidia-smi with docker: ``` docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi ``` To use CUDA, use the images with the `cublas` tag, for example. The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags): - CUDA `11` tags: `master-cublas-cuda11`, `v1.40.0-cublas-cuda11`, ... - CUDA `12` tags: `master-cublas-cuda12`, `v1.40.0-cublas-cuda12`, ... - CUDA `11` + FFmpeg tags: `master-cublas-cuda11-ffmpeg`, `v1.40.0-cublas-cuda11-ffmpeg`, ... - CUDA `12` + FFmpeg tags: `master-cublas-cuda12-ffmpeg`, `v1.40.0-cublas-cuda12-ffmpeg`, ... In addition to the commands to run LocalAI normally, you need to specify `--gpus all` to docker, for example: ```bash docker run --rm -ti --gpus all -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12 ``` If the GPU inferencing is working, you should be able to see something like: ``` 5:22PM DBG Loading model in memory from file: /models/open-llama-7b-q4_0.bin ggml_init_cublas: found 1 CUDA devices: Device 0: Tesla T4 llama.cpp: loading model from /models/open-llama-7b-q4_0.bin llama_model_load_internal: format = ggjt v3 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 1024 llama_model_load_internal: n_embd = 4096 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 32 llama_model_load_internal: n_layer = 32 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 2 (mostly Q4_0) llama_model_load_internal: n_ff = 11008 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 7B llama_model_load_internal: ggml ctx size = 0.07 MB llama_model_load_internal: using CUDA for GPU acceleration llama_model_load_internal: mem required = 4321.77 MB (+ 1026.00 MB per state) llama_model_load_internal: allocating batch_size x 1 MB = 512 MB VRAM for the scratch buffer llama_model_load_internal: offloading 10 repeating layers to GPU llama_model_load_internal: offloaded 10/35 layers to GPU llama_model_load_internal: total VRAM used: 1598 MB ................................................................................................... llama_init_from_file: kv self size = 512.00 MB ``` #### Model configuration Depending on the model architecture and backend used, there might be different ways to enable GPU acceleration. It is required to configure the model you intend to use with a YAML config file. For example, for `llama.cpp` workloads a configuration file might look like this (where `gpu_layers` is the number of layers to offload to the GPU): ```yaml name: my-model-name # Default model parameters parameters: # Relative to the models path model: llama.cpp-model.ggmlv3.q5_K_M.bin context_size: 1024 threads: 1 f16: true # enable with GPU acceleration gpu_layers: 22 # GPU Layers (only used when built with cublas) ``` For diffusers instead, it might look like this instead: ```yaml name: stablediffusion parameters: model: toonyou_beta6.safetensors backend: diffusers step: 30 f16: true diffusers: pipeline_type: StableDiffusionPipeline cuda: true enable_parameters: "negative_prompt,num_inference_steps,clip_skip" scheduler_type: "k_dpmpp_sde" ```