mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-20 05:07:54 +00:00
feat: Add exllama (#881)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
1d1cae8e4d
commit
ff3ab5fcca
@ -11,7 +11,7 @@ ARG TARGETARCH
|
|||||||
ARG TARGETVARIANT
|
ARG TARGETVARIANT
|
||||||
|
|
||||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||||
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py,autogptq:/build/extra/grpc/autogptq/autogptq.py,bark:/build/extra/grpc/bark/ttsbark.py,diffusers:/build/extra/grpc/diffusers/backend_diffusers.py"
|
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py,autogptq:/build/extra/grpc/autogptq/autogptq.py,bark:/build/extra/grpc/bark/ttsbark.py,diffusers:/build/extra/grpc/diffusers/backend_diffusers.py,exllama:/build/extra/grpc/exllama/exllama.py"
|
||||||
ARG GO_TAGS="stablediffusion tts"
|
ARG GO_TAGS="stablediffusion tts"
|
||||||
|
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
@ -29,7 +29,7 @@ RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
|
|||||||
dpkg -i cuda-keyring_1.0-1_all.deb && \
|
dpkg -i cuda-keyring_1.0-1_all.deb && \
|
||||||
rm -f cuda-keyring_1.0-1_all.deb && \
|
rm -f cuda-keyring_1.0-1_all.deb && \
|
||||||
apt-get update && \
|
apt-get update && \
|
||||||
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||||
; fi
|
; fi
|
||||||
ENV PATH /usr/local/cuda/bin:${PATH}
|
ENV PATH /usr/local/cuda/bin:${PATH}
|
||||||
|
|
||||||
@ -42,7 +42,7 @@ RUN if [ "${TARGETARCH}" = "amd64" ]; then \
|
|||||||
pip install git+https://github.com/suno-ai/bark.git diffusers invisible_watermark transformers accelerate safetensors;\
|
pip install git+https://github.com/suno-ai/bark.git diffusers invisible_watermark transformers accelerate safetensors;\
|
||||||
fi
|
fi
|
||||||
RUN if [ "${BUILD_TYPE}" = "cublas" ] && [ "${TARGETARCH}" = "amd64" ]; then \
|
RUN if [ "${BUILD_TYPE}" = "cublas" ] && [ "${TARGETARCH}" = "amd64" ]; then \
|
||||||
pip install torch && pip install auto-gptq;\
|
pip install torch && pip install auto-gptq https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu${CUDA_MAJOR_VERSION}${CUDA_MINOR_VERSION}-cp39-cp39-linux_x86_64.whl;\
|
||||||
fi
|
fi
|
||||||
RUN pip install -r /build/extra/requirements.txt && rm -rf /build/extra/requirements.txt
|
RUN pip install -r /build/extra/requirements.txt && rm -rf /build/extra/requirements.txt
|
||||||
|
|
||||||
|
49
extra/grpc/exllama/backend_pb2.py
Normal file
49
extra/grpc/exllama/backend_pb2.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
||||||
|
# source: backend.proto
|
||||||
|
"""Generated protocol buffer code."""
|
||||||
|
from google.protobuf import descriptor as _descriptor
|
||||||
|
from google.protobuf import descriptor_pool as _descriptor_pool
|
||||||
|
from google.protobuf import symbol_database as _symbol_database
|
||||||
|
from google.protobuf.internal import builder as _builder
|
||||||
|
# @@protoc_insertion_point(imports)
|
||||||
|
|
||||||
|
_sym_db = _symbol_database.Default()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x9d\x04\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
|
||||||
|
|
||||||
|
_globals = globals()
|
||||||
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
||||||
|
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals)
|
||||||
|
if _descriptor._USE_C_DESCRIPTORS == False:
|
||||||
|
|
||||||
|
DESCRIPTOR._options = None
|
||||||
|
DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto'
|
||||||
|
_globals['_HEALTHMESSAGE']._serialized_start=26
|
||||||
|
_globals['_HEALTHMESSAGE']._serialized_end=41
|
||||||
|
_globals['_PREDICTOPTIONS']._serialized_start=44
|
||||||
|
_globals['_PREDICTOPTIONS']._serialized_end=818
|
||||||
|
_globals['_REPLY']._serialized_start=820
|
||||||
|
_globals['_REPLY']._serialized_end=844
|
||||||
|
_globals['_MODELOPTIONS']._serialized_start=847
|
||||||
|
_globals['_MODELOPTIONS']._serialized_end=1388
|
||||||
|
_globals['_RESULT']._serialized_start=1390
|
||||||
|
_globals['_RESULT']._serialized_end=1432
|
||||||
|
_globals['_EMBEDDINGRESULT']._serialized_start=1434
|
||||||
|
_globals['_EMBEDDINGRESULT']._serialized_end=1471
|
||||||
|
_globals['_TRANSCRIPTREQUEST']._serialized_start=1473
|
||||||
|
_globals['_TRANSCRIPTREQUEST']._serialized_end=1540
|
||||||
|
_globals['_TRANSCRIPTRESULT']._serialized_start=1542
|
||||||
|
_globals['_TRANSCRIPTRESULT']._serialized_end=1620
|
||||||
|
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1622
|
||||||
|
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1711
|
||||||
|
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1714
|
||||||
|
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1872
|
||||||
|
_globals['_TTSREQUEST']._serialized_start=1874
|
||||||
|
_globals['_TTSREQUEST']._serialized_end=1928
|
||||||
|
_globals['_BACKEND']._serialized_start=1931
|
||||||
|
_globals['_BACKEND']._serialized_end=2422
|
||||||
|
# @@protoc_insertion_point(module_scope)
|
297
extra/grpc/exllama/backend_pb2_grpc.py
Normal file
297
extra/grpc/exllama/backend_pb2_grpc.py
Normal file
@ -0,0 +1,297 @@
|
|||||||
|
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||||
|
"""Client and server classes corresponding to protobuf-defined services."""
|
||||||
|
import grpc
|
||||||
|
|
||||||
|
import backend_pb2 as backend__pb2
|
||||||
|
|
||||||
|
|
||||||
|
class BackendStub(object):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
|
||||||
|
def __init__(self, channel):
|
||||||
|
"""Constructor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channel: A grpc.Channel.
|
||||||
|
"""
|
||||||
|
self.Health = channel.unary_unary(
|
||||||
|
'/backend.Backend/Health',
|
||||||
|
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.Reply.FromString,
|
||||||
|
)
|
||||||
|
self.Predict = channel.unary_unary(
|
||||||
|
'/backend.Backend/Predict',
|
||||||
|
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.Reply.FromString,
|
||||||
|
)
|
||||||
|
self.LoadModel = channel.unary_unary(
|
||||||
|
'/backend.Backend/LoadModel',
|
||||||
|
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.Result.FromString,
|
||||||
|
)
|
||||||
|
self.PredictStream = channel.unary_stream(
|
||||||
|
'/backend.Backend/PredictStream',
|
||||||
|
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.Reply.FromString,
|
||||||
|
)
|
||||||
|
self.Embedding = channel.unary_unary(
|
||||||
|
'/backend.Backend/Embedding',
|
||||||
|
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||||
|
)
|
||||||
|
self.GenerateImage = channel.unary_unary(
|
||||||
|
'/backend.Backend/GenerateImage',
|
||||||
|
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.Result.FromString,
|
||||||
|
)
|
||||||
|
self.AudioTranscription = channel.unary_unary(
|
||||||
|
'/backend.Backend/AudioTranscription',
|
||||||
|
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||||
|
)
|
||||||
|
self.TTS = channel.unary_unary(
|
||||||
|
'/backend.Backend/TTS',
|
||||||
|
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||||
|
response_deserializer=backend__pb2.Result.FromString,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class BackendServicer(object):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
|
||||||
|
def Health(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def Predict(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def LoadModel(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def PredictStream(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def Embedding(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def GenerateImage(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def AudioTranscription(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
def TTS(self, request, context):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||||
|
context.set_details('Method not implemented!')
|
||||||
|
raise NotImplementedError('Method not implemented!')
|
||||||
|
|
||||||
|
|
||||||
|
def add_BackendServicer_to_server(servicer, server):
|
||||||
|
rpc_method_handlers = {
|
||||||
|
'Health': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.Health,
|
||||||
|
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||||
|
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||||
|
),
|
||||||
|
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.Predict,
|
||||||
|
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||||
|
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||||
|
),
|
||||||
|
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.LoadModel,
|
||||||
|
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||||
|
response_serializer=backend__pb2.Result.SerializeToString,
|
||||||
|
),
|
||||||
|
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||||
|
servicer.PredictStream,
|
||||||
|
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||||
|
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||||
|
),
|
||||||
|
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.Embedding,
|
||||||
|
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||||
|
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||||
|
),
|
||||||
|
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.GenerateImage,
|
||||||
|
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||||
|
response_serializer=backend__pb2.Result.SerializeToString,
|
||||||
|
),
|
||||||
|
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.AudioTranscription,
|
||||||
|
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||||
|
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||||
|
),
|
||||||
|
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||||
|
servicer.TTS,
|
||||||
|
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||||
|
response_serializer=backend__pb2.Result.SerializeToString,
|
||||||
|
),
|
||||||
|
}
|
||||||
|
generic_handler = grpc.method_handlers_generic_handler(
|
||||||
|
'backend.Backend', rpc_method_handlers)
|
||||||
|
server.add_generic_rpc_handlers((generic_handler,))
|
||||||
|
|
||||||
|
|
||||||
|
# This class is part of an EXPERIMENTAL API.
|
||||||
|
class Backend(object):
|
||||||
|
"""Missing associated documentation comment in .proto file."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def Health(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||||
|
backend__pb2.HealthMessage.SerializeToString,
|
||||||
|
backend__pb2.Reply.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def Predict(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||||
|
backend__pb2.PredictOptions.SerializeToString,
|
||||||
|
backend__pb2.Reply.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def LoadModel(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||||
|
backend__pb2.ModelOptions.SerializeToString,
|
||||||
|
backend__pb2.Result.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def PredictStream(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||||
|
backend__pb2.PredictOptions.SerializeToString,
|
||||||
|
backend__pb2.Reply.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def Embedding(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||||
|
backend__pb2.PredictOptions.SerializeToString,
|
||||||
|
backend__pb2.EmbeddingResult.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def GenerateImage(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||||
|
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||||
|
backend__pb2.Result.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def AudioTranscription(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||||
|
backend__pb2.TranscriptRequest.SerializeToString,
|
||||||
|
backend__pb2.TranscriptResult.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def TTS(request,
|
||||||
|
target,
|
||||||
|
options=(),
|
||||||
|
channel_credentials=None,
|
||||||
|
call_credentials=None,
|
||||||
|
insecure=False,
|
||||||
|
compression=None,
|
||||||
|
wait_for_ready=None,
|
||||||
|
timeout=None,
|
||||||
|
metadata=None):
|
||||||
|
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||||
|
backend__pb2.TTSRequest.SerializeToString,
|
||||||
|
backend__pb2.Result.FromString,
|
||||||
|
options, channel_credentials,
|
||||||
|
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
142
extra/grpc/exllama/exllama.py
Executable file
142
extra/grpc/exllama/exllama.py
Executable file
@ -0,0 +1,142 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import grpc
|
||||||
|
from concurrent import futures
|
||||||
|
import time
|
||||||
|
import backend_pb2
|
||||||
|
import backend_pb2_grpc
|
||||||
|
import argparse
|
||||||
|
import signal
|
||||||
|
import sys
|
||||||
|
import os, glob
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import version as torch_version
|
||||||
|
from exllama.generator import ExLlamaGenerator
|
||||||
|
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||||||
|
from exllama.tokenizer import ExLlamaTokenizer
|
||||||
|
|
||||||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||||
|
|
||||||
|
# Implement the BackendServicer class with the service methods
|
||||||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||||
|
def generate(self,prompt, max_new_tokens):
|
||||||
|
self.generator.end_beam_search()
|
||||||
|
|
||||||
|
# Tokenizing the input
|
||||||
|
ids = self.generator.tokenizer.encode(prompt)
|
||||||
|
|
||||||
|
self.generator.gen_begin_reuse(ids)
|
||||||
|
initial_len = self.generator.sequence[0].shape[0]
|
||||||
|
has_leading_space = False
|
||||||
|
decoded_text = ''
|
||||||
|
for i in range(max_new_tokens):
|
||||||
|
token = self.generator.gen_single_token()
|
||||||
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
||||||
|
has_leading_space = True
|
||||||
|
|
||||||
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
||||||
|
if has_leading_space:
|
||||||
|
decoded_text = ' ' + decoded_text
|
||||||
|
|
||||||
|
if token.item() == self.generator.tokenizer.eos_token_id:
|
||||||
|
break
|
||||||
|
return decoded_text
|
||||||
|
def Health(self, request, context):
|
||||||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||||
|
def LoadModel(self, request, context):
|
||||||
|
try:
|
||||||
|
# https://github.com/turboderp/exllama/blob/master/example_cfg.py
|
||||||
|
model_directory = request.ModelFile
|
||||||
|
|
||||||
|
# Locate files we need within that directory
|
||||||
|
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
|
||||||
|
model_config_path = os.path.join(model_directory, "config.json")
|
||||||
|
st_pattern = os.path.join(model_directory, "*.safetensors")
|
||||||
|
model_path = glob.glob(st_pattern)[0]
|
||||||
|
|
||||||
|
# Create config, model, tokenizer and generator
|
||||||
|
|
||||||
|
config = ExLlamaConfig(model_config_path) # create config from config.json
|
||||||
|
config.model_path = model_path # supply path to model weights file
|
||||||
|
|
||||||
|
model = ExLlama(config) # create ExLlama instance and load the weights
|
||||||
|
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
|
||||||
|
|
||||||
|
cache = ExLlamaCache(model, batch_size = 2) # create cache for inference
|
||||||
|
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
|
||||||
|
|
||||||
|
self.generator= generator
|
||||||
|
self.model = model
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.cache = cache
|
||||||
|
except Exception as err:
|
||||||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||||
|
|
||||||
|
def Predict(self, request, context):
|
||||||
|
penalty = 1.15
|
||||||
|
if request.Penalty != 0.0:
|
||||||
|
penalty = request.Penalty
|
||||||
|
self.generator.settings.token_repetition_penalty_max = penalty
|
||||||
|
self.generator.settings.temperature = request.Temperature
|
||||||
|
self.generator.settings.top_k = request.TopK
|
||||||
|
self.generator.settings.top_p = request.TopP
|
||||||
|
|
||||||
|
tokens = 512
|
||||||
|
if request.Tokens != 0:
|
||||||
|
tokens = request.Tokens
|
||||||
|
|
||||||
|
if self.cache.batch_size == 1:
|
||||||
|
del self.cache
|
||||||
|
self.cache = ExLlamaCache(self.model, batch_size=2)
|
||||||
|
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
|
||||||
|
|
||||||
|
t = self.generate(request.Prompt, tokens)
|
||||||
|
|
||||||
|
# Remove prompt from response if present
|
||||||
|
if request.Prompt in t:
|
||||||
|
t = t.replace(request.Prompt, "")
|
||||||
|
|
||||||
|
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
|
||||||
|
|
||||||
|
def PredictStream(self, request, context):
|
||||||
|
# Implement PredictStream RPC
|
||||||
|
#for reply in some_data_generator():
|
||||||
|
# yield reply
|
||||||
|
# Not implemented yet
|
||||||
|
return self.Predict(request, context)
|
||||||
|
|
||||||
|
|
||||||
|
def serve(address):
|
||||||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||||||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||||
|
server.add_insecure_port(address)
|
||||||
|
server.start()
|
||||||
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||||
|
|
||||||
|
# Define the signal handler function
|
||||||
|
def signal_handler(sig, frame):
|
||||||
|
print("Received termination signal. Shutting down...")
|
||||||
|
server.stop(0)
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||||||
|
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
server.stop(0)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
serve(args.addr)
|
Loading…
Reference in New Issue
Block a user