docs: updated Transformer parameters description (#2234)

updated Transformer parameters
This commit is contained in:
fakezeta 2024-05-04 10:45:25 +02:00 committed by GitHub
parent 54faaa87ea
commit fa10302dd2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -296,7 +296,7 @@ backend: transformers
parameters:
model: "facebook/opt-125m"
type: AutoModelForCausalLM
quantization: bnb_4bit # One of: bnb_8bit, bnb_4bit, xpu_4bit (optional)
quantization: bnb_4bit # One of: bnb_8bit, bnb_4bit, xpu_4bit, xpu_8bit (optional)
```
The backend will automatically download the required files in order to run the model.
@ -307,10 +307,42 @@ The backend will automatically download the required files in order to run the m
| Type | Description |
| --- | --- |
| `AutoModelForCausalLM` | `AutoModelForCausalLM` is a model that can be used to generate sequences. |
| `OVModelForCausalLM` | for OpenVINO models |
| `AutoModelForCausalLM` | `AutoModelForCausalLM` is a model that can be used to generate sequences. Use it for NVIDIA CUDA and Intel GPU with Intel Extensions for Pytorch acceleration |
| `OVModelForCausalLM` | for Intel CPU/GPU/NPU OpenVINO Text Generation models |
| `OVModelForFeatureExtraction` | for Intel CPU/GPU/NPU OpenVINO Embedding acceleration |
| N/A | Defaults to `AutoModel` |
- `OVModelForCausalLM` requires OpenVINO IR [Text Generation](https://huggingface.co/models?library=openvino&pipeline_tag=text-generation) models from Hugging face
- `OVModelForFeatureExtraction` works with any Safetensors Transformer [Feature Extraction](https://huggingface.co/models?pipeline_tag=feature-extraction&library=transformers,safetensors) model from Huggingface (Embedding Model)
Please note that streaming is currently not implemente in `AutoModelForCausalLM` for Intel GPU.
AMD GPU support is not implemented.
Although AMD CPU is not officially supported by OpenVINO there are reports that it works: YMMV.
##### Embeddings
Use `embeddings: true` if the model is an embedding model
##### Inference device selection
Transformer backend tries to automatically select the best device for inference, anyway you can override the decision manually overriding with the `main_gpu` parameter.
| Inference Engine | Applicable Values |
| --- | --- |
| CUDA | `cuda`, `cuda.X` where X is the GPU device like in `nvidia-smi -L` output |
| OpenVINO | Any applicable value from [Inference Modes](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html) like `AUTO`,`CPU`,`GPU`,`NPU`,`MULTI`,`HETERO` |
Example for CUDA:
`main_gpu: cuda.0`
Example for OpenVINO:
`main_gpu: AUTO:-CPU`
This parameter applies to both Text Generation and Feature Extraction (i.e. Embeddings) models.
##### Inference Precision
Transformer backend automatically select the fastest applicable inference precision according to the device support.
CUDA backend can manually enable *bfloat16* if your hardware support it with the following parameter:
`f16: true`
##### Quantization
@ -318,8 +350,42 @@ The backend will automatically download the required files in order to run the m
| --- | --- |
| `bnb_8bit` | 8-bit quantization |
| `bnb_4bit` | 4-bit quantization |
| `xpu_8bit` | 8-bit quantization for Intel XPUs |
| `xpu_4bit` | 4-bit quantization for Intel XPUs |
##### Trust Remote Code
Some models like Microsoft Phi-3 requires external code than what is provided by the transformer library.
By default it is disabled for security.
It can be manually enabled with:
`trust_remote_code: true`
##### Maximum Context Size
Maximum context size in bytes can be specified with the parameter: `context_size`. Do not use values higher than what your model support.
Usage example:
`context_size: 8192`
##### Auto Prompt Template
Usually chat template is defined by the model author in the `tokenizer_config.json` file.
To enable it use the `use_tokenizer_template: true` parameter in the `template` section.
Usage example:
```
template:
use_tokenizer_template: true
```
##### Custom Stop Words
Stopwords are usually defined in `tokenizer_config.json` file.
They can be overridden with the `stopwords` parameter in case of need like in llama3-Instruct model.
Usage example:
```
stopwords:
- "<|eot_id|>"
- "<|end_of_text|>"
```
#### Usage
Use the `completions` endpoint by specifying the `transformers` model: