Modernized LlamaIndex integration (#1613)

Updated LlamaIndex example
This commit is contained in:
James Braza 2024-01-20 01:06:32 -08:00 committed by GitHub
parent b7127c2dc9
commit f3d71f8819
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 24 additions and 36 deletions

View File

@ -1,25 +1,22 @@
# LocalAI Demonstration with Embeddings
This demonstration shows you how to use embeddings with existing data in LocalAI. We are using the `llama_index` library to facilitate the embedding and querying processes. The `Weaviate` client is used as the embedding source.
## Prerequisites
Before proceeding, make sure you have the following installed:
- Weaviate client
- LocalAI and its dependencies
- llama_index and its dependencies
This demonstration shows you how to use embeddings with existing data in LocalAI.
We are using the `llama-index` library to facilitate the embedding and querying processes.
The `Weaviate` client is used as the embedding source.
## Getting Started
1. Clone this repository:
1. Clone this repository and navigate to this directory
2. Navigate to the project directory:
```bash
git clone git@github.com:mudler/LocalAI.git
cd LocalAI/examples/llamaindex
```
3. Run the example:
2. pip install LlamaIndex and Weviate's client: `pip install llama-index>=0.9.9 weviate-client`
3. Run the example: `python main.py`
`python main.py`
```
```none
Downloading (…)lve/main/config.json: 100%|███████████████████████████| 684/684 [00:00<00:00, 6.01MB/s]
Downloading model.safetensors: 100%|███████████████████████████████| 133M/133M [00:03<00:00, 39.5MB/s]
Downloading (…)okenizer_config.json: 100%|███████████████████████████| 366/366 [00:00<00:00, 2.79MB/s]
@ -27,4 +24,4 @@ Downloading (…)solve/main/vocab.txt: 100%|████████████
Downloading (…)/main/tokenizer.json: 100%|█████████████████████████| 711k/711k [00:00<00:00, 18.8MB/s]
Downloading (…)cial_tokens_map.json: 100%|███████████████████████████| 125/125 [00:00<00:00, 1.18MB/s]
LocalAI is a community-driven project that aims to make AI accessible to everyone. It was created by Ettore Di Giacinto and is focused on providing various AI-related features such as text generation with GPTs, text to audio, audio to text, image generation, and more. The project is constantly growing and evolving, with a roadmap for future improvements. Anyone is welcome to contribute, provide feedback, and submit pull requests to help make LocalAI better.
```
```

View File

@ -1,38 +1,29 @@
import os
import weaviate
from llama_index import ServiceContext, VectorStoreIndex, StorageContext
from llama_index.llms import LocalAI
from llama_index import ServiceContext, VectorStoreIndex
from llama_index.llms import LOCALAI_DEFAULTS, OpenAILike
from llama_index.vector_stores import WeaviateVectorStore
from llama_index.storage.storage_context import StorageContext
# Weaviate client setup
client = weaviate.Client("http://weviate.default")
# Weaviate vector store setup
vector_store = WeaviateVectorStore(weaviate_client=client, index_name="AIChroma")
vector_store = WeaviateVectorStore(
weaviate_client=weaviate.Client("http://weviate.default"), index_name="AIChroma"
)
# Storage context setup
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# LocalAI setup
llm = LocalAI(temperature=0, model_name="gpt-3.5-turbo", api_base="http://local-ai.default", api_key="stub")
llm.globally_use_chat_completions = True;
# LLM setup, served via LocalAI
llm = OpenAILike(temperature=0, model="gpt-3.5-turbo", **LOCALAI_DEFAULTS)
# Service context setup
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")
# Load index from stored vectors
index = VectorStoreIndex.from_vector_store(
vector_store,
storage_context=storage_context,
service_context=service_context
vector_store, service_context=service_context
)
# Query engine setup
query_engine = index.as_query_engine(similarity_top_k=1, vector_store_query_mode="hybrid")
query_engine = index.as_query_engine(
similarity_top_k=1, vector_store_query_mode="hybrid"
)
# Query example
response = query_engine.query("What is LocalAI?")
print(response)
print(response)