mirror of
https://github.com/mudler/LocalAI.git
synced 2025-04-15 23:16:48 +00:00
models(gallery): add llama-3.2-chibi-3b (#3843)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
7ddf486b37
commit
f166541ac3
@ -182,6 +182,21 @@
|
||||
- filename: Fireball-Meta-Llama-3.2-8B-Instruct-agent-003-128k-code-DPO.Q4_K_M.gguf
|
||||
sha256: 7f45fa79bc6c9847ef9fbad08c3bb5a0f2dbb56d2e2200a5d37b260a57274e55
|
||||
uri: huggingface://QuantFactory/Fireball-Meta-Llama-3.2-8B-Instruct-agent-003-128k-code-DPO-GGUF/Fireball-Meta-Llama-3.2-8B-Instruct-agent-003-128k-code-DPO.Q4_K_M.gguf
|
||||
- !!merge <<: *llama32
|
||||
name: "llama-3.2-chibi-3b"
|
||||
icon: https://huggingface.co/AELLM/Llama-3.2-Chibi-3B/resolve/main/chibi.jpg
|
||||
urls:
|
||||
- https://huggingface.co/AELLM/Llama-3.2-Chibi-3B
|
||||
- https://huggingface.co/mradermacher/Llama-3.2-Chibi-3B-GGUF
|
||||
description: |
|
||||
Small parameter LLMs are ideal for navigating the complexities of the Japanese language, which involves multiple character systems like kanji, hiragana, and katakana, along with subtle social cues. Despite their smaller size, these models are capable of delivering highly accurate and context-aware results, making them perfect for use in environments where resources are constrained. Whether deployed on mobile devices with limited processing power or in edge computing scenarios where fast, real-time responses are needed, these models strike the perfect balance between performance and efficiency, without sacrificing quality or speed.
|
||||
overrides:
|
||||
parameters:
|
||||
model: Llama-3.2-Chibi-3B.Q4_K_M.gguf
|
||||
files:
|
||||
- filename: Llama-3.2-Chibi-3B.Q4_K_M.gguf
|
||||
sha256: 4b594cd5f66181202713f1cf97ce2f86d0acfa1b862a64930d5f512c45640a2f
|
||||
uri: huggingface://mradermacher/Llama-3.2-Chibi-3B-GGUF/Llama-3.2-Chibi-3B.Q4_K_M.gguf
|
||||
- &qwen25
|
||||
## Qwen2.5
|
||||
name: "qwen2.5-14b-instruct"
|
||||
|
Loading…
x
Reference in New Issue
Block a user