models(gallery): add llama-3.2-chibi-3b (#3843)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-10-16 09:12:58 +02:00 committed by GitHub
parent 7ddf486b37
commit f166541ac3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -182,6 +182,21 @@
- filename: Fireball-Meta-Llama-3.2-8B-Instruct-agent-003-128k-code-DPO.Q4_K_M.gguf
sha256: 7f45fa79bc6c9847ef9fbad08c3bb5a0f2dbb56d2e2200a5d37b260a57274e55
uri: huggingface://QuantFactory/Fireball-Meta-Llama-3.2-8B-Instruct-agent-003-128k-code-DPO-GGUF/Fireball-Meta-Llama-3.2-8B-Instruct-agent-003-128k-code-DPO.Q4_K_M.gguf
- !!merge <<: *llama32
name: "llama-3.2-chibi-3b"
icon: https://huggingface.co/AELLM/Llama-3.2-Chibi-3B/resolve/main/chibi.jpg
urls:
- https://huggingface.co/AELLM/Llama-3.2-Chibi-3B
- https://huggingface.co/mradermacher/Llama-3.2-Chibi-3B-GGUF
description: |
Small parameter LLMs are ideal for navigating the complexities of the Japanese language, which involves multiple character systems like kanji, hiragana, and katakana, along with subtle social cues. Despite their smaller size, these models are capable of delivering highly accurate and context-aware results, making them perfect for use in environments where resources are constrained. Whether deployed on mobile devices with limited processing power or in edge computing scenarios where fast, real-time responses are needed, these models strike the perfect balance between performance and efficiency, without sacrificing quality or speed.
overrides:
parameters:
model: Llama-3.2-Chibi-3B.Q4_K_M.gguf
files:
- filename: Llama-3.2-Chibi-3B.Q4_K_M.gguf
sha256: 4b594cd5f66181202713f1cf97ce2f86d0acfa1b862a64930d5f512c45640a2f
uri: huggingface://mradermacher/Llama-3.2-Chibi-3B-GGUF/Llama-3.2-Chibi-3B.Q4_K_M.gguf
- &qwen25
## Qwen2.5
name: "qwen2.5-14b-instruct"