feat(aio): add intel profile (#1901)

* feat(aio): add intel profile

* docs: clarify AIO images features
This commit is contained in:
Ettore Di Giacinto 2024-03-26 18:45:25 +01:00 committed by GitHub
parent 1395e505cd
commit e58410fa99
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 178 additions and 23 deletions

View File

@ -38,6 +38,10 @@
</a> </a>
</p> </p>
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai) [![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU. **LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.

View File

@ -1,11 +1,5 @@
backend: bert-embeddings
embeddings: true
f16: true
gpu_layers: 90
mmap: true
name: text-embedding-ada-002 name: text-embedding-ada-002
backend: bert-embeddings
parameters: parameters:
model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin

View File

@ -50,4 +50,13 @@ download_files:
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin" uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
- filename: "stablediffusion_assets/vocab.txt" - filename: "stablediffusion_assets/vocab.txt"
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d" sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt" uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@ -1,8 +1,6 @@
backend: llama-cpp backend: llama-cpp
context_size: 4096 context_size: 4096
f16: true f16: true
gpu_layers: 90
mmap: true mmap: true
name: gpt-4-vision-preview name: gpt-4-vision-preview
@ -14,13 +12,6 @@ roles:
mmproj: bakllava-mmproj.gguf mmproj: bakllava-mmproj.gguf
parameters: parameters:
model: bakllava.gguf model: bakllava.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
mirostat: 2
mirostat_eta: 1.0
mirostat_tau: 1.0
template: template:
chat: | chat: |

View File

@ -30,6 +30,7 @@ function detect_gpu() {
echo "Intel GPU detected" echo "Intel GPU detected"
if [ -d /opt/intel ]; then if [ -d /opt/intel ]; then
GPU_ACCELERATION=true GPU_ACCELERATION=true
GPU_VENDOR=intel
else else
echo "Intel GPU detected, but Intel GPU drivers are not installed. GPU acceleration will not be available." echo "Intel GPU detected, but Intel GPU drivers are not installed. GPU acceleration will not be available."
fi fi
@ -75,7 +76,8 @@ function detect_gpu_size() {
echo "Unable to determine NVIDIA GPU memory size. Falling back to CPU." echo "Unable to determine NVIDIA GPU memory size. Falling back to CPU."
GPU_SIZE=gpu-8g GPU_SIZE=gpu-8g
fi fi
elif [ "$GPU_ACCELERATION" = true ] && [ "$GPU_VENDOR" = "intel" ]; then
GPU_SIZE=intel
# Default to a generic GPU size until we implement GPU size detection for non NVIDIA GPUs # Default to a generic GPU size until we implement GPU size detection for non NVIDIA GPUs
elif [ "$GPU_ACCELERATION" = true ]; then elif [ "$GPU_ACCELERATION" = true ]; then
echo "Non-NVIDIA GPU detected. Specific GPU memory size detection is not implemented." echo "Non-NVIDIA GPU detected. Specific GPU memory size detection is not implemented."

View File

@ -1,6 +1,5 @@
name: text-embedding-ada-002 name: text-embedding-ada-002
backend: sentencetransformers backend: sentencetransformers
embeddings: true
parameters: parameters:
model: all-MiniLM-L6-v2 model: all-MiniLM-L6-v2

View File

@ -20,7 +20,6 @@ usage: |
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-d '{ -d '{
"prompt": "<positive prompt>|<negative prompt>", "prompt": "<positive prompt>|<negative prompt>",
"model": "dreamshaper",
"step": 25, "step": 25,
"size": "512x512" "size": "512x512"
}' }'

View File

@ -1,8 +1,6 @@
backend: llama-cpp backend: llama-cpp
context_size: 4096 context_size: 4096
f16: true f16: true
gpu_layers: 90
mmap: true mmap: true
name: gpt-4-vision-preview name: gpt-4-vision-preview

12
aio/intel/embeddings.yaml Normal file
View File

@ -0,0 +1,12 @@
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

20
aio/intel/image-gen.yaml Normal file
View File

@ -0,0 +1,20 @@
name: stablediffusion
parameters:
model: runwayml/stable-diffusion-v1-5
backend: diffusers
step: 25
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps"
scheduler_type: "k_dpmpp_2m"
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@ -0,0 +1,18 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@ -0,0 +1,15 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"tts-1",
"input": "Hi, this is a test."
}'

View File

@ -0,0 +1,51 @@
name: gpt-4
mmap: false
f16: false
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
roles:
assistant_function_call: assistant
function: tool
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "function"}}{{.Role}}{{else if eq .RoleName "user"}}user{{end}}
{{ if eq .RoleName "assistant_function_call" }}<tool_call>{{end}}
{{ if eq .RoleName "function" }}<tool_result>{{end}}
{{if .Content}}{{.Content}}{{end}}
{{if .FunctionCall}}{{toJson .FunctionCall}}{{end}}
{{ if eq .RoleName "assistant_function_call" }}</tool_call>{{end}}
{{ if eq .RoleName "function" }}</tool_result>{{end}}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call><|im_end|>
{{.Input}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
stopwords:
- <|im_end|>
- <dummy32000>
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

35
aio/intel/vision.yaml Normal file
View File

@ -0,0 +1,35 @@
backend: llama-cpp
context_size: 4096
mmap: false
f16: false
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@ -49,7 +49,6 @@ icon = "info"
</a> </a>
</p> </p>
> 💡 Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy) > 💡 Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy)
> >
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) > [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)

View File

@ -7,6 +7,15 @@ weight = 26
All-In-One images are images that come pre-configured with a set of models and backends to fully leverage almost all the LocalAI featureset. These images are available for both CPU and GPU environments. The AIO images are designed to be easy to use and requires no configuration. Models configuration can be found [here](https://github.com/mudler/LocalAI/tree/master/aio) separated by size. All-In-One images are images that come pre-configured with a set of models and backends to fully leverage almost all the LocalAI featureset. These images are available for both CPU and GPU environments. The AIO images are designed to be easy to use and requires no configuration. Models configuration can be found [here](https://github.com/mudler/LocalAI/tree/master/aio) separated by size.
What you can find configured out of the box:
- Image generation
- Text generation
- Text to audio
- Audio transcription
- Embeddings
- GPT Vision
| Description | Quay | Docker Hub | | Description | Quay | Docker Hub |
| --- | --- |-----------------------------------------------| | --- | --- |-----------------------------------------------|