diff --git a/Dockerfile b/Dockerfile index 68202bf4..3298000d 100644 --- a/Dockerfile +++ b/Dockerfile @@ -11,7 +11,7 @@ ARG TARGETARCH ARG TARGETVARIANT ENV BUILD_TYPE=${BUILD_TYPE} -ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py,autogptq:/build/extra/grpc/autogptq/autogptq.py,bark:/build/extra/grpc/bark/ttsbark.py,diffusers:/build/extra/grpc/diffusers/backend_diffusers.py,exllama:/build/extra/grpc/exllama/exllama.py,vall-e-x:/build/extra/grpc/vall-e-x/ttsvalle.py" +ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py,autogptq:/build/extra/grpc/autogptq/autogptq.py,bark:/build/extra/grpc/bark/ttsbark.py,diffusers:/build/extra/grpc/diffusers/backend_diffusers.py,exllama:/build/extra/grpc/exllama/exllama.py,vall-e-x:/build/extra/grpc/vall-e-x/ttsvalle.py,vllm:/build/extra/grpc/vllm/backend_vllm.py" ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]' ARG GO_TAGS="stablediffusion tts" @@ -43,7 +43,7 @@ RUN if [ "${TARGETARCH}" = "amd64" ]; then \ pip install git+https://github.com/suno-ai/bark.git diffusers invisible_watermark transformers accelerate safetensors;\ fi RUN if [ "${BUILD_TYPE}" = "cublas" ] && [ "${TARGETARCH}" = "amd64" ]; then \ - pip install torch && pip install auto-gptq https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu${CUDA_MAJOR_VERSION}${CUDA_MINOR_VERSION}-cp39-cp39-linux_x86_64.whl;\ + pip install torch vllm && pip install auto-gptq https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu${CUDA_MAJOR_VERSION}${CUDA_MINOR_VERSION}-cp39-cp39-linux_x86_64.whl;\ fi RUN pip install -r /build/extra/requirements.txt && rm -rf /build/extra/requirements.txt diff --git a/Makefile b/Makefile index 91085592..dc994e80 100644 --- a/Makefile +++ b/Makefile @@ -362,6 +362,7 @@ protogen-python: python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/bark/ --grpc_python_out=extra/grpc/bark/ pkg/grpc/proto/backend.proto python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/diffusers/ --grpc_python_out=extra/grpc/diffusers/ pkg/grpc/proto/backend.proto python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/vall-e-x/ --grpc_python_out=extra/grpc/vall-e-x/ pkg/grpc/proto/backend.proto + python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/vllm/ --grpc_python_out=extra/grpc/vllm/ pkg/grpc/proto/backend.proto ## GRPC diff --git a/README.md b/README.md index d57e89d4..f14b4b90 100644 --- a/README.md +++ b/README.md @@ -27,7 +27,7 @@ [](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[](https://artifacthub.io/packages/search?repo=localai) -**LocalAI** is a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families that are compatible with the ggml format. Does not require GPU. +**LocalAI** is a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families that are compatible with the ggml format, pytorch and more. Does not require GPU.
Follow LocalAI
@@ -114,6 +114,19 @@ See the [documentation](https://localai.io/basics/getting_started/#example-use-g - [How to install in Kubernetes](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes) - [Projects integrating LocalAI](https://localai.io/integrations/) +## Citation + +If you utilize this repository, data in a downstream project, please consider citing it with: + +@misc{localai, + author = {Ettore Di Giacinto}, + title = {LocalAI: The free, Open source OpenAI alternative}, + year = {2023}, + publisher = {GitHub}, + journal = {GitHub repository}, + howpublished = {\url{https://github.com/go-skynet/LocalAI}}, +} + ## ❤️ Sponsors > Do you find LocalAI useful? diff --git a/extra/grpc/vllm/backend_pb2.py b/extra/grpc/vllm/backend_pb2.py new file mode 100644 index 00000000..73e7e52c --- /dev/null +++ b/extra/grpc/vllm/backend_pb2.py @@ -0,0 +1,61 @@ +# -*- coding: utf-8 -*- +# Generated by the protocol buffer compiler. DO NOT EDIT! +# source: backend.proto +"""Generated protocol buffer code.""" +from google.protobuf import descriptor as _descriptor +from google.protobuf import descriptor_pool as _descriptor_pool +from google.protobuf import symbol_database as _symbol_database +from google.protobuf.internal import builder as _builder +# @@protoc_insertion_point(imports) + +_sym_db = _symbol_database.Default() + + + + +DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\xdc\x05\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\x12\x10\n\x08\x43\x46GScale\x18\x1d \x01(\x02\x12\x0f\n\x07IMG2IMG\x18\x1e \x01(\x08\x12\x11\n\tCLIPModel\x18\x1f \x01(\t\x12\x15\n\rCLIPSubfolder\x18 \x01(\t\x12\x10\n\x08\x43LIPSkip\x18! \x01(\x05\x12\x11\n\tTokenizer\x18\" \x01(\t\x12\x10\n\x08LoraBase\x18# \x01(\t\x12\x13\n\x0bLoraAdapter\x18$ \x01(\t\x12\x11\n\tNoMulMatQ\x18% \x01(\x08\x12\x11\n\tAudioPath\x18& \x01(\t\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\xd7\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\x12\x0b\n\x03src\x18\t \x01(\t\x12\x18\n\x10\x45nableParameters\x18\n \x01(\t\x12\x10\n\x08\x43LIPSkip\x18\x0b \x01(\x05\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t\"6\n\x14TokenizationResponse\x12\x0e\n\x06length\x18\x01 \x01(\x05\x12\x0e\n\x06tokens\x18\x02 \x03(\x05\"\x8e\x01\n\x0fMemoryUsageData\x12\r\n\x05total\x18\x01 \x01(\x04\x12:\n\tbreakdown\x18\x02 \x03(\x0b\x32\'.backend.MemoryUsageData.BreakdownEntry\x1a\x30\n\x0e\x42reakdownEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x04:\x02\x38\x01\"\xad\x01\n\x0eStatusResponse\x12,\n\x05state\x18\x01 \x01(\x0e\x32\x1d.backend.StatusResponse.State\x12(\n\x06memory\x18\x02 \x01(\x0b\x32\x18.backend.MemoryUsageData\"C\n\x05State\x12\x11\n\rUNINITIALIZED\x10\x00\x12\x08\n\x04\x42USY\x10\x01\x12\t\n\x05READY\x10\x02\x12\x12\n\x05\x45RROR\x10\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x32\xf4\x04\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x12J\n\x0eTokenizeString\x12\x17.backend.PredictOptions\x1a\x1d.backend.TokenizationResponse\"\x00\x12;\n\x06Status\x12\x16.backend.HealthMessage\x1a\x17.backend.StatusResponse\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3') + +_globals = globals() +_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) +_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals) +if _descriptor._USE_C_DESCRIPTORS == False: + + DESCRIPTOR._options = None + DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto' + _MEMORYUSAGEDATA_BREAKDOWNENTRY._options = None + _MEMORYUSAGEDATA_BREAKDOWNENTRY._serialized_options = b'8\001' + _globals['_HEALTHMESSAGE']._serialized_start=26 + _globals['_HEALTHMESSAGE']._serialized_end=41 + _globals['_PREDICTOPTIONS']._serialized_start=44 + _globals['_PREDICTOPTIONS']._serialized_end=818 + _globals['_REPLY']._serialized_start=820 + _globals['_REPLY']._serialized_end=844 + _globals['_MODELOPTIONS']._serialized_start=847 + _globals['_MODELOPTIONS']._serialized_end=1579 + _globals['_RESULT']._serialized_start=1581 + _globals['_RESULT']._serialized_end=1623 + _globals['_EMBEDDINGRESULT']._serialized_start=1625 + _globals['_EMBEDDINGRESULT']._serialized_end=1662 + _globals['_TRANSCRIPTREQUEST']._serialized_start=1664 + _globals['_TRANSCRIPTREQUEST']._serialized_end=1731 + _globals['_TRANSCRIPTRESULT']._serialized_start=1733 + _globals['_TRANSCRIPTRESULT']._serialized_end=1811 + _globals['_TRANSCRIPTSEGMENT']._serialized_start=1813 + _globals['_TRANSCRIPTSEGMENT']._serialized_end=1902 + _globals['_GENERATEIMAGEREQUEST']._serialized_start=1905 + _globals['_GENERATEIMAGEREQUEST']._serialized_end=2120 + _globals['_TTSREQUEST']._serialized_start=2122 + _globals['_TTSREQUEST']._serialized_end=2176 + _globals['_TOKENIZATIONRESPONSE']._serialized_start=2178 + _globals['_TOKENIZATIONRESPONSE']._serialized_end=2232 + _globals['_MEMORYUSAGEDATA']._serialized_start=2235 + _globals['_MEMORYUSAGEDATA']._serialized_end=2377 + _globals['_MEMORYUSAGEDATA_BREAKDOWNENTRY']._serialized_start=2329 + _globals['_MEMORYUSAGEDATA_BREAKDOWNENTRY']._serialized_end=2377 + _globals['_STATUSRESPONSE']._serialized_start=2380 + _globals['_STATUSRESPONSE']._serialized_end=2553 + _globals['_STATUSRESPONSE_STATE']._serialized_start=2486 + _globals['_STATUSRESPONSE_STATE']._serialized_end=2553 + _globals['_BACKEND']._serialized_start=2556 + _globals['_BACKEND']._serialized_end=3184 +# @@protoc_insertion_point(module_scope) diff --git a/extra/grpc/vllm/backend_pb2_grpc.py b/extra/grpc/vllm/backend_pb2_grpc.py new file mode 100644 index 00000000..79a7677f --- /dev/null +++ b/extra/grpc/vllm/backend_pb2_grpc.py @@ -0,0 +1,363 @@ +# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! +"""Client and server classes corresponding to protobuf-defined services.""" +import grpc + +import backend_pb2 as backend__pb2 + + +class BackendStub(object): + """Missing associated documentation comment in .proto file.""" + + def __init__(self, channel): + """Constructor. + + Args: + channel: A grpc.Channel. + """ + self.Health = channel.unary_unary( + '/backend.Backend/Health', + request_serializer=backend__pb2.HealthMessage.SerializeToString, + response_deserializer=backend__pb2.Reply.FromString, + ) + self.Predict = channel.unary_unary( + '/backend.Backend/Predict', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.Reply.FromString, + ) + self.LoadModel = channel.unary_unary( + '/backend.Backend/LoadModel', + request_serializer=backend__pb2.ModelOptions.SerializeToString, + response_deserializer=backend__pb2.Result.FromString, + ) + self.PredictStream = channel.unary_stream( + '/backend.Backend/PredictStream', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.Reply.FromString, + ) + self.Embedding = channel.unary_unary( + '/backend.Backend/Embedding', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.EmbeddingResult.FromString, + ) + self.GenerateImage = channel.unary_unary( + '/backend.Backend/GenerateImage', + request_serializer=backend__pb2.GenerateImageRequest.SerializeToString, + response_deserializer=backend__pb2.Result.FromString, + ) + self.AudioTranscription = channel.unary_unary( + '/backend.Backend/AudioTranscription', + request_serializer=backend__pb2.TranscriptRequest.SerializeToString, + response_deserializer=backend__pb2.TranscriptResult.FromString, + ) + self.TTS = channel.unary_unary( + '/backend.Backend/TTS', + request_serializer=backend__pb2.TTSRequest.SerializeToString, + response_deserializer=backend__pb2.Result.FromString, + ) + self.TokenizeString = channel.unary_unary( + '/backend.Backend/TokenizeString', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.TokenizationResponse.FromString, + ) + self.Status = channel.unary_unary( + '/backend.Backend/Status', + request_serializer=backend__pb2.HealthMessage.SerializeToString, + response_deserializer=backend__pb2.StatusResponse.FromString, + ) + + +class BackendServicer(object): + """Missing associated documentation comment in .proto file.""" + + def Health(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def Predict(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def LoadModel(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def PredictStream(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def Embedding(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def GenerateImage(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def AudioTranscription(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def TTS(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def TokenizeString(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def Status(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + +def add_BackendServicer_to_server(servicer, server): + rpc_method_handlers = { + 'Health': grpc.unary_unary_rpc_method_handler( + servicer.Health, + request_deserializer=backend__pb2.HealthMessage.FromString, + response_serializer=backend__pb2.Reply.SerializeToString, + ), + 'Predict': grpc.unary_unary_rpc_method_handler( + servicer.Predict, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.Reply.SerializeToString, + ), + 'LoadModel': grpc.unary_unary_rpc_method_handler( + servicer.LoadModel, + request_deserializer=backend__pb2.ModelOptions.FromString, + response_serializer=backend__pb2.Result.SerializeToString, + ), + 'PredictStream': grpc.unary_stream_rpc_method_handler( + servicer.PredictStream, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.Reply.SerializeToString, + ), + 'Embedding': grpc.unary_unary_rpc_method_handler( + servicer.Embedding, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.EmbeddingResult.SerializeToString, + ), + 'GenerateImage': grpc.unary_unary_rpc_method_handler( + servicer.GenerateImage, + request_deserializer=backend__pb2.GenerateImageRequest.FromString, + response_serializer=backend__pb2.Result.SerializeToString, + ), + 'AudioTranscription': grpc.unary_unary_rpc_method_handler( + servicer.AudioTranscription, + request_deserializer=backend__pb2.TranscriptRequest.FromString, + response_serializer=backend__pb2.TranscriptResult.SerializeToString, + ), + 'TTS': grpc.unary_unary_rpc_method_handler( + servicer.TTS, + request_deserializer=backend__pb2.TTSRequest.FromString, + response_serializer=backend__pb2.Result.SerializeToString, + ), + 'TokenizeString': grpc.unary_unary_rpc_method_handler( + servicer.TokenizeString, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.TokenizationResponse.SerializeToString, + ), + 'Status': grpc.unary_unary_rpc_method_handler( + servicer.Status, + request_deserializer=backend__pb2.HealthMessage.FromString, + response_serializer=backend__pb2.StatusResponse.SerializeToString, + ), + } + generic_handler = grpc.method_handlers_generic_handler( + 'backend.Backend', rpc_method_handlers) + server.add_generic_rpc_handlers((generic_handler,)) + + + # This class is part of an EXPERIMENTAL API. +class Backend(object): + """Missing associated documentation comment in .proto file.""" + + @staticmethod + def Health(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health', + backend__pb2.HealthMessage.SerializeToString, + backend__pb2.Reply.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def Predict(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.Reply.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def LoadModel(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel', + backend__pb2.ModelOptions.SerializeToString, + backend__pb2.Result.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def PredictStream(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.Reply.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def Embedding(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.EmbeddingResult.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def GenerateImage(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage', + backend__pb2.GenerateImageRequest.SerializeToString, + backend__pb2.Result.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def AudioTranscription(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription', + backend__pb2.TranscriptRequest.SerializeToString, + backend__pb2.TranscriptResult.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def TTS(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS', + backend__pb2.TTSRequest.SerializeToString, + backend__pb2.Result.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def TokenizeString(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.TokenizationResponse.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def Status(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status', + backend__pb2.HealthMessage.SerializeToString, + backend__pb2.StatusResponse.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) diff --git a/extra/grpc/vllm/backend_vllm.py b/extra/grpc/vllm/backend_vllm.py new file mode 100644 index 00000000..4b884f6f --- /dev/null +++ b/extra/grpc/vllm/backend_vllm.py @@ -0,0 +1,100 @@ +#!/usr/bin/env python3 +import grpc +from concurrent import futures +import time +import backend_pb2 +import backend_pb2_grpc +import argparse +import signal +import sys +import os, glob + +from pathlib import Path +from vllm import LLM, SamplingParams + +_ONE_DAY_IN_SECONDS = 60 * 60 * 24 + +# Implement the BackendServicer class with the service methods +class BackendServicer(backend_pb2_grpc.BackendServicer): + def generate(self,prompt, max_new_tokens): + self.generator.end_beam_search() + + # Tokenizing the input + ids = self.generator.tokenizer.encode(prompt) + + self.generator.gen_begin_reuse(ids) + initial_len = self.generator.sequence[0].shape[0] + has_leading_space = False + decoded_text = '' + for i in range(max_new_tokens): + token = self.generator.gen_single_token() + if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): + has_leading_space = True + + decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) + if has_leading_space: + decoded_text = ' ' + decoded_text + + if token.item() == self.generator.tokenizer.eos_token_id: + break + return decoded_text + def Health(self, request, context): + return backend_pb2.Reply(message=bytes("OK", 'utf-8')) + def LoadModel(self, request, context): + try: + # https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py + self.llm = LLM(model=request.Model) + except Exception as err: + return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") + return backend_pb2.Result(message="Model loaded successfully", success=True) + + def Predict(self, request, context): + sampling_params = SamplingParams(temperature=request.Temperature, top_p=request.TopP) + outputs = self.llm.generate([request.Prompt], sampling_params) + + generated_text = outputs[0].outputs[0].text + + # Remove prompt from response if present + if request.Prompt in generated_text: + generated_text = generated_text.replace(request.Prompt, "") + + return backend_pb2.Result(message=bytes(generated_text, encoding='utf-8')) + + def PredictStream(self, request, context): + # Implement PredictStream RPC + #for reply in some_data_generator(): + # yield reply + # Not implemented yet + return self.Predict(request, context) + +def serve(address): + server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) + backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) + server.add_insecure_port(address) + server.start() + print("Server started. Listening on: " + address, file=sys.stderr) + + # Define the signal handler function + def signal_handler(sig, frame): + print("Received termination signal. Shutting down...") + server.stop(0) + sys.exit(0) + + # Set the signal handlers for SIGINT and SIGTERM + signal.signal(signal.SIGINT, signal_handler) + signal.signal(signal.SIGTERM, signal_handler) + + try: + while True: + time.sleep(_ONE_DAY_IN_SECONDS) + except KeyboardInterrupt: + server.stop(0) + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Run the gRPC server.") + parser.add_argument( + "--addr", default="localhost:50051", help="The address to bind the server to." + ) + args = parser.parse_args() + + serve(args.addr) \ No newline at end of file