feat(transformers): add support to Mamba

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2025-01-22 22:05:48 +01:00
parent 715071b68d
commit d1912bcbdd
17 changed files with 10 additions and 344 deletions

View File

@ -15,7 +15,7 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \
@ -442,9 +442,6 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vllm" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "rerankers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/rerankers \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "mamba" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/mamba \
; fi
# Make sure the models directory exists

View File

@ -533,10 +533,10 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen transformers-protogen parler-tts-protogen kokoro-protogen vllm-protogen openvoice-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen rerankers-protogen transformers-protogen parler-tts-protogen kokoro-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean rerankers-protogen-clean transformers-protogen-clean parler-tts-protogen-clean kokoro-protogen-clean vllm-protogen-clean openvoice-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean rerankers-protogen-clean transformers-protogen-clean parler-tts-protogen-clean kokoro-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
@ -578,14 +578,6 @@ exllama2-protogen:
exllama2-protogen-clean:
$(MAKE) -C backend/python/exllama2 protogen-clean
.PHONY: mamba-protogen
mamba-protogen:
$(MAKE) -C backend/python/mamba protogen
.PHONY: mamba-protogen-clean
mamba-protogen-clean:
$(MAKE) -C backend/python/mamba protogen-clean
.PHONY: rerankers-protogen
rerankers-protogen:
$(MAKE) -C backend/python/rerankers protogen
@ -642,7 +634,6 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/coqui
$(MAKE) -C backend/python/diffusers
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/mamba
$(MAKE) -C backend/python/rerankers
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/parler-tts

View File

@ -1,29 +0,0 @@
.PHONY: mamba
mamba: protogen
bash install.sh
.PHONY: run
run: protogen
@echo "Running mamba..."
bash run.sh
@echo "mamba run."
.PHONY: test
test: protogen
@echo "Testing mamba..."
bash test.sh
@echo "mamba tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
$(RM) -r venv __pycache__

View File

@ -1,5 +0,0 @@
# Creating a separate environment for the mamba project
```
make mamba
```

View File

@ -1,179 +0,0 @@
#!/usr/bin/env python3
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import backend_pb2
import backend_pb2_grpc
import grpc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
MAMBA_CHAT= os.environ.get('MAMBA_CHAT', '1') == '1'
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer that implements the Backend service defined in backend.proto.
"""
def generate(self,prompt, max_new_tokens):
"""
Generates text based on the given prompt and maximum number of new tokens.
Args:
prompt (str): The prompt to generate text from.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated text.
"""
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt)
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
decoded_text = ''
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
if token.item() == self.generator.tokenizer.eos_token_id:
break
return decoded_text
def Health(self, request, context):
"""
Returns a health check message.
Args:
request: The health check request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The health check reply.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
Loads a language model.
Args:
request: The load model request.
context: The gRPC context.
Returns:
backend_pb2.Result: The load model result.
"""
try:
tokenizerModel = request.Tokenizer
if tokenizerModel == "":
tokenizerModel = request.Model
tokenizer = AutoTokenizer.from_pretrained(tokenizerModel)
if MAMBA_CHAT:
tokenizer.eos_token = "<|endoftext|>"
tokenizer.pad_token = tokenizer.eos_token
self.tokenizer = tokenizer
self.model = MambaLMHeadModel.from_pretrained(request.Model, device="cuda", dtype=torch.float16)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict result.
"""
if request.TopP == 0:
request.TopP = 0.9
max_tokens = request.Tokens
if request.Tokens == 0:
max_tokens = 2000
# encoded_input = self.tokenizer(request.Prompt)
tokens = self.tokenizer(request.Prompt, return_tensors="pt")
input_ids = tokens.input_ids.to(device="cuda")
out = self.model.generate(input_ids=input_ids, max_length=max_tokens, temperature=request.Temperature,
top_p=request.TopP, eos_token_id=self.tokenizer.eos_token_id)
decoded = self.tokenizer.batch_decode(out)
generated_text = decoded[0]
# Remove prompt from response if present
if request.Prompt in generated_text:
generated_text = generated_text.replace(request.Prompt, "")
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
Args:
request: The predict stream request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict stream result.
"""
yield self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@ -1,9 +0,0 @@
#!/bin/bash
set -e
LIMIT_TARGETS="cublas"
EXTRA_PIP_INSTALL_FLAGS="--no-build-isolation"
source $(dirname $0)/../common/libbackend.sh
installRequirements

View File

@ -1,2 +0,0 @@
causal-conv1d==1.4.0
mamba-ssm==2.2.2

View File

@ -1,2 +0,0 @@
torch==2.4.1
transformers

View File

@ -1,3 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
transformers

View File

@ -1,2 +0,0 @@
torch==2.4.1
transformers

View File

@ -1,6 +0,0 @@
# mabma does not specify it's build dependencies per PEP517, so we need to disable build isolation
# this also means that we need to install the basic build dependencies into the venv ourselves
# https://github.com/Dao-AILab/causal-conv1d/issues/24
packaging
setuptools
wheel

View File

@ -1,3 +0,0 @@
grpcio==1.69.0
protobuf
certifi

View File

@ -1,6 +0,0 @@
#!/bin/bash
LIMIT_TARGETS="cublas"
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View File

@ -1,76 +0,0 @@
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
import unittest
import subprocess
import time
import grpc
import backend_pb2_grpc
import backend_pb2
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service.
This class contains methods to test the startup and shutdown of the gRPC service.
"""
def setUp(self):
self.service = subprocess.Popen(["python", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
self.service.terminate()
self.service.wait()
def test_server_startup(self):
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_text(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
req = backend_pb2.PredictOptions(Prompt="The capital of France is")
resp = stub.Predict(req)
self.assertIsNotNone(resp.message)
except Exception as err:
print(err)
self.fail("text service failed")
finally:
self.tearDown()

View File

@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@ -21,7 +21,7 @@ import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria, MambaConfig, MambaForCausalLM
from transformers import AutoProcessor, MusicgenForConditionalGeneration
from scipy.io import wavfile
import outetts
@ -245,6 +245,10 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
autoTokenizer = False
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
self.SentenceTransformer = True
elif request.Type == "Mamba":
autoTokenizer = False
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = MambaForCausalLM.from_pretrained(model_name)
else:
print("Automodel", file=sys.stderr)
self.model = AutoModel.from_pretrained(model_name,

View File

@ -29,12 +29,14 @@ var Aliases map[string]string = map[string]string{
"langchain-huggingface": LCHuggingFaceBackend,
"transformers-musicgen": TransformersBackend,
"sentencetransformers": TransformersBackend,
"mamba": TransformersBackend,
"stablediffusion": StableDiffusionGGMLBackend,
}
var TypeAlias map[string]string = map[string]string{
"sentencetransformers": "SentenceTransformer",
"huggingface-embeddings": "SentenceTransformer",
"mamba": "Mamba",
"transformers-musicgen": "MusicgenForConditionalGeneration",
}