mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-18 10:46:46 +00:00
feat(tts): Add Kokoro backend (#4616)
* feat(kokoro): Add new TTS backend Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Add kokoro to images Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Support combined voices Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Ignore pt and onnx Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Add plbert and istfnet Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
de4aa9fb1d
commit
acb2eb23c8
@ -15,7 +15,7 @@ ARG TARGETARCH
|
||||
ARG TARGETVARIANT
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
|
||||
|
||||
|
||||
RUN apt-get update && \
|
||||
@ -436,6 +436,10 @@ SHELL ["/bin/bash", "-c"]
|
||||
# Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer
|
||||
# Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer
|
||||
|
||||
RUN if [[ ( "${IMAGE_TYPE}" == "extras ")]]; then \
|
||||
apt-get -qq -y install espeak-ng \
|
||||
; fi
|
||||
|
||||
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/coqui \
|
||||
; fi && \
|
||||
@ -452,6 +456,9 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAG
|
||||
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/vall-e-x \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/kokoro \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "openvoice" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/openvoice \
|
||||
; fi && \
|
||||
|
13
Makefile
13
Makefile
@ -583,10 +583,10 @@ protogen-go-clean:
|
||||
$(RM) bin/*
|
||||
|
||||
.PHONY: protogen-python
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen kokoro-protogen vllm-protogen openvoice-protogen
|
||||
|
||||
.PHONY: protogen-python-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean kokoro-protogen-clean vllm-protogen-clean openvoice-protogen-clean
|
||||
|
||||
.PHONY: autogptq-protogen
|
||||
autogptq-protogen:
|
||||
@ -684,6 +684,14 @@ vall-e-x-protogen:
|
||||
vall-e-x-protogen-clean:
|
||||
$(MAKE) -C backend/python/vall-e-x protogen-clean
|
||||
|
||||
.PHONY: kokoro-protogen
|
||||
kokoro-protogen:
|
||||
$(MAKE) -C backend/python/kokoro protogen
|
||||
|
||||
.PHONY: kokoro-protogen-clean
|
||||
kokoro-protogen-clean:
|
||||
$(MAKE) -C backend/python/kokoro protogen-clean
|
||||
|
||||
.PHONY: openvoice-protogen
|
||||
openvoice-protogen:
|
||||
$(MAKE) -C backend/python/openvoice protogen
|
||||
@ -715,6 +723,7 @@ prepare-extra-conda-environments: protogen-python
|
||||
$(MAKE) -C backend/python/transformers-musicgen
|
||||
$(MAKE) -C backend/python/parler-tts
|
||||
$(MAKE) -C backend/python/vall-e-x
|
||||
$(MAKE) -C backend/python/kokoro
|
||||
$(MAKE) -C backend/python/openvoice
|
||||
$(MAKE) -C backend/python/exllama2
|
||||
|
||||
|
20
backend/python/kokoro/Makefile
Normal file
20
backend/python/kokoro/Makefile
Normal file
@ -0,0 +1,20 @@
|
||||
.DEFAULT_GOAL := install
|
||||
|
||||
.PHONY: install
|
||||
install:
|
||||
bash install.sh
|
||||
$(MAKE) protogen
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
bash protogen.sh
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
rm -rf venv __pycache__
|
131
backend/python/kokoro/backend.py
Executable file
131
backend/python/kokoro/backend.py
Executable file
@ -0,0 +1,131 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for Kokoro models.
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
import soundfile as sf
|
||||
import grpc
|
||||
|
||||
from models import build_model
|
||||
from kokoro import generate
|
||||
import torch
|
||||
|
||||
SAMPLE_RATE = 22050
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
self.MODEL = build_model(request.ModelFile, device)
|
||||
options = request.Options
|
||||
# Find the voice from the options, options are a list of strings in this form optname:optvalue:
|
||||
VOICE_NAME = None
|
||||
for opt in options:
|
||||
if opt.startswith("voice:"):
|
||||
VOICE_NAME = opt.split(":")[1]
|
||||
break
|
||||
if VOICE_NAME is None:
|
||||
return backend_pb2.Result(success=False, message=f"No voice specified in options")
|
||||
MODELPATH = request.ModelPath
|
||||
# If voice name contains a plus, split it and load the two models and combine them
|
||||
if "+" in VOICE_NAME:
|
||||
voice1, voice2 = VOICE_NAME.split("+")
|
||||
voice1 = torch.load(f'{MODELPATH}/{voice1}.pt', weights_only=True).to(device)
|
||||
voice2 = torch.load(f'{MODELPATH}/{voice2}.pt', weights_only=True).to(device)
|
||||
self.VOICEPACK = torch.mean(torch.stack([voice1, voice2]), dim=0)
|
||||
else:
|
||||
self.VOICEPACK = torch.load(f'{MODELPATH}/{VOICE_NAME}.pt', weights_only=True).to(device)
|
||||
|
||||
self.VOICE_NAME = VOICE_NAME
|
||||
|
||||
print(f'Loaded voice: {VOICE_NAME}')
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
model_name = request.model
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
try:
|
||||
audio, out_ps = generate(self.MODEL, request.text, self.VOICEPACK, lang=self.VOICE_NAME)
|
||||
print(out_ps)
|
||||
sf.write(request.dst, audio, SAMPLE_RATE)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("[Kokoro] Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("[Kokoro] Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(f"[Kokoro] startup: {args}", file=sys.stderr)
|
||||
serve(args.addr)
|
14
backend/python/kokoro/install.sh
Executable file
14
backend/python/kokoro/install.sh
Executable file
@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
|
||||
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
|
||||
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
|
||||
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
|
||||
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
|
||||
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
|
||||
fi
|
||||
|
||||
installRequirements
|
524
backend/python/kokoro/istftnet.py
Normal file
524
backend/python/kokoro/istftnet.py
Normal file
@ -0,0 +1,524 @@
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/istftnet.py
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
||||
from scipy.signal import get_window
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
class AdaIN1d(nn.Module):
|
||||
def __init__(self, style_dim, num_features):
|
||||
super().__init__()
|
||||
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
||||
self.fc = nn.Linear(style_dim, num_features*2)
|
||||
|
||||
def forward(self, x, s):
|
||||
h = self.fc(s)
|
||||
h = h.view(h.size(0), h.size(1), 1)
|
||||
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||
return (1 + gamma) * self.norm(x) + beta
|
||||
|
||||
class AdaINResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
||||
super(AdaINResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.adain1 = nn.ModuleList([
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
])
|
||||
|
||||
self.adain2 = nn.ModuleList([
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
])
|
||||
|
||||
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
||||
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
||||
|
||||
|
||||
def forward(self, x, s):
|
||||
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
||||
xt = n1(x, s)
|
||||
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
||||
xt = c1(xt)
|
||||
xt = n2(xt, s)
|
||||
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
class TorchSTFT(torch.nn.Module):
|
||||
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
||||
super().__init__()
|
||||
self.filter_length = filter_length
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
||||
|
||||
def transform(self, input_data):
|
||||
forward_transform = torch.stft(
|
||||
input_data,
|
||||
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
||||
return_complex=True)
|
||||
|
||||
return torch.abs(forward_transform), torch.angle(forward_transform)
|
||||
|
||||
def inverse(self, magnitude, phase):
|
||||
inverse_transform = torch.istft(
|
||||
magnitude * torch.exp(phase * 1j),
|
||||
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
||||
|
||||
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
||||
|
||||
def forward(self, input_data):
|
||||
self.magnitude, self.phase = self.transform(input_data)
|
||||
reconstruction = self.inverse(self.magnitude, self.phase)
|
||||
return reconstruction
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
self.flag_for_pulse = flag_for_pulse
|
||||
self.upsample_scale = upsample_scale
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||||
return uv
|
||||
|
||||
def _f02sine(self, f0_values):
|
||||
""" f0_values: (batchsize, length, dim)
|
||||
where dim indicates fundamental tone and overtones
|
||||
"""
|
||||
# convert to F0 in rad. The interger part n can be ignored
|
||||
# because 2 * np.pi * n doesn't affect phase
|
||||
rad_values = (f0_values / self.sampling_rate) % 1
|
||||
|
||||
# initial phase noise (no noise for fundamental component)
|
||||
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
||||
device=f0_values.device)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
|
||||
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
||||
if not self.flag_for_pulse:
|
||||
# # for normal case
|
||||
|
||||
# # To prevent torch.cumsum numerical overflow,
|
||||
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
||||
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
||||
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
||||
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||||
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||||
# cumsum_shift = torch.zeros_like(rad_values)
|
||||
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
|
||||
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
||||
scale_factor=1/self.upsample_scale,
|
||||
mode="linear").transpose(1, 2)
|
||||
|
||||
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||||
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||||
# cumsum_shift = torch.zeros_like(rad_values)
|
||||
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
|
||||
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||||
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
||||
sines = torch.sin(phase)
|
||||
|
||||
else:
|
||||
# If necessary, make sure that the first time step of every
|
||||
# voiced segments is sin(pi) or cos(0)
|
||||
# This is used for pulse-train generation
|
||||
|
||||
# identify the last time step in unvoiced segments
|
||||
uv = self._f02uv(f0_values)
|
||||
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
||||
uv_1[:, -1, :] = 1
|
||||
u_loc = (uv < 1) * (uv_1 > 0)
|
||||
|
||||
# get the instantanouse phase
|
||||
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
||||
# different batch needs to be processed differently
|
||||
for idx in range(f0_values.shape[0]):
|
||||
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
||||
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
||||
# stores the accumulation of i.phase within
|
||||
# each voiced segments
|
||||
tmp_cumsum[idx, :, :] = 0
|
||||
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
||||
|
||||
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
||||
# within the previous voiced segment.
|
||||
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
||||
|
||||
# get the sines
|
||||
sines = torch.cos(i_phase * 2 * np.pi)
|
||||
return sines
|
||||
|
||||
def forward(self, f0):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
||||
device=f0.device)
|
||||
# fundamental component
|
||||
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
||||
|
||||
# generate sine waveforms
|
||||
sine_waves = self._f02sine(fn) * self.sine_amp
|
||||
|
||||
# generate uv signal
|
||||
# uv = torch.ones(f0.shape)
|
||||
# uv = uv * (f0 > self.voiced_threshold)
|
||||
uv = self._f02uv(f0)
|
||||
|
||||
# noise: for unvoiced should be similar to sine_amp
|
||||
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||
# . for voiced regions is self.noise_std
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
|
||||
# first: set the unvoiced part to 0 by uv
|
||||
# then: additive noise
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
"""
|
||||
# source for harmonic branch
|
||||
with torch.no_grad():
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x)
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
|
||||
# source for noise branch, in the same shape as uv
|
||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||
return sine_merge, noise, uv
|
||||
def padDiff(x):
|
||||
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
||||
super(Generator, self).__init__()
|
||||
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
resblock = AdaINResBlock1
|
||||
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=24000,
|
||||
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
||||
harmonic_num=8, voiced_threshod=10)
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.noise_res = nn.ModuleList()
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
||||
k, u, padding=(k-u)//2)))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel//(2**(i+1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(ch, k, d, style_dim))
|
||||
|
||||
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||||
|
||||
if i + 1 < len(upsample_rates): #
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
||||
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
||||
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
||||
|
||||
|
||||
self.post_n_fft = gen_istft_n_fft
|
||||
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
||||
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
||||
|
||||
|
||||
def forward(self, x, s, f0):
|
||||
with torch.no_grad():
|
||||
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
|
||||
har_source, noi_source, uv = self.m_source(f0)
|
||||
har_source = har_source.transpose(1, 2).squeeze(1)
|
||||
har_spec, har_phase = self.stft.transform(har_source)
|
||||
har = torch.cat([har_spec, har_phase], dim=1)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x_source = self.noise_convs[i](har)
|
||||
x_source = self.noise_res[i](x_source, s)
|
||||
|
||||
x = self.ups[i](x)
|
||||
if i == self.num_upsamples - 1:
|
||||
x = self.reflection_pad(x)
|
||||
|
||||
x = x + x_source
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||||
return self.stft.inverse(spec, phase)
|
||||
|
||||
def fw_phase(self, x, s):
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.reflection_pad(x)
|
||||
x = self.conv_post(x)
|
||||
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||||
return spec, phase
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
class AdainResBlk1d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||
upsample='none', dropout_p=0.0):
|
||||
super().__init__()
|
||||
self.actv = actv
|
||||
self.upsample_type = upsample
|
||||
self.upsample = UpSample1d(upsample)
|
||||
self.learned_sc = dim_in != dim_out
|
||||
self._build_weights(dim_in, dim_out, style_dim)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
if upsample == 'none':
|
||||
self.pool = nn.Identity()
|
||||
else:
|
||||
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||
|
||||
|
||||
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||
if self.learned_sc:
|
||||
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||
|
||||
def _shortcut(self, x):
|
||||
x = self.upsample(x)
|
||||
if self.learned_sc:
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
def _residual(self, x, s):
|
||||
x = self.norm1(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.pool(x)
|
||||
x = self.conv1(self.dropout(x))
|
||||
x = self.norm2(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.conv2(self.dropout(x))
|
||||
return x
|
||||
|
||||
def forward(self, x, s):
|
||||
out = self._residual(x, s)
|
||||
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||
return out
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, layer_type):
|
||||
super().__init__()
|
||||
self.layer_type = layer_type
|
||||
|
||||
def forward(self, x):
|
||||
if self.layer_type == 'none':
|
||||
return x
|
||||
else:
|
||||
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
||||
resblock_kernel_sizes = [3,7,11],
|
||||
upsample_rates = [10, 6],
|
||||
upsample_initial_channel=512,
|
||||
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
||||
upsample_kernel_sizes=[20, 12],
|
||||
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
||||
super().__init__()
|
||||
|
||||
self.decode = nn.ModuleList()
|
||||
|
||||
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
||||
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
||||
|
||||
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||||
|
||||
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||||
|
||||
self.asr_res = nn.Sequential(
|
||||
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
||||
)
|
||||
|
||||
|
||||
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
||||
upsample_initial_channel, resblock_dilation_sizes,
|
||||
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
||||
|
||||
def forward(self, asr, F0_curve, N, s):
|
||||
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
||||
N = self.N_conv(N.unsqueeze(1))
|
||||
|
||||
x = torch.cat([asr, F0, N], axis=1)
|
||||
x = self.encode(x, s)
|
||||
|
||||
asr_res = self.asr_res(asr)
|
||||
|
||||
res = True
|
||||
for block in self.decode:
|
||||
if res:
|
||||
x = torch.cat([x, asr_res, F0, N], axis=1)
|
||||
x = block(x, s)
|
||||
if block.upsample_type != "none":
|
||||
res = False
|
||||
|
||||
x = self.generator(x, s, F0_curve)
|
||||
return x
|
166
backend/python/kokoro/kokoro.py
Normal file
166
backend/python/kokoro/kokoro.py
Normal file
@ -0,0 +1,166 @@
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
|
||||
import phonemizer
|
||||
import re
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
def split_num(num):
|
||||
num = num.group()
|
||||
if '.' in num:
|
||||
return num
|
||||
elif ':' in num:
|
||||
h, m = [int(n) for n in num.split(':')]
|
||||
if m == 0:
|
||||
return f"{h} o'clock"
|
||||
elif m < 10:
|
||||
return f'{h} oh {m}'
|
||||
return f'{h} {m}'
|
||||
year = int(num[:4])
|
||||
if year < 1100 or year % 1000 < 10:
|
||||
return num
|
||||
left, right = num[:2], int(num[2:4])
|
||||
s = 's' if num.endswith('s') else ''
|
||||
if 100 <= year % 1000 <= 999:
|
||||
if right == 0:
|
||||
return f'{left} hundred{s}'
|
||||
elif right < 10:
|
||||
return f'{left} oh {right}{s}'
|
||||
return f'{left} {right}{s}'
|
||||
|
||||
def flip_money(m):
|
||||
m = m.group()
|
||||
bill = 'dollar' if m[0] == '$' else 'pound'
|
||||
if m[-1].isalpha():
|
||||
return f'{m[1:]} {bill}s'
|
||||
elif '.' not in m:
|
||||
s = '' if m[1:] == '1' else 's'
|
||||
return f'{m[1:]} {bill}{s}'
|
||||
b, c = m[1:].split('.')
|
||||
s = '' if b == '1' else 's'
|
||||
c = int(c.ljust(2, '0'))
|
||||
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
||||
return f'{b} {bill}{s} and {c} {coins}'
|
||||
|
||||
def point_num(num):
|
||||
a, b = num.group().split('.')
|
||||
return ' point '.join([a, ' '.join(b)])
|
||||
|
||||
def normalize_text(text):
|
||||
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
||||
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
||||
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
||||
text = text.replace('(', '«').replace(')', '»')
|
||||
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
||||
text = text.replace(a, b+' ')
|
||||
text = re.sub(r'[^\S \n]', ' ', text)
|
||||
text = re.sub(r' +', ' ', text)
|
||||
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
||||
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
||||
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
||||
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
||||
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
||||
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
||||
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
||||
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
||||
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
||||
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
||||
text = re.sub(r'\d*\.\d+', point_num, text)
|
||||
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
||||
text = re.sub(r'(?<=\d)S', ' S', text)
|
||||
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
||||
text = re.sub(r"(?<=X')S\b", 's', text)
|
||||
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
||||
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
||||
return text.strip()
|
||||
|
||||
def get_vocab():
|
||||
_pad = "$"
|
||||
_punctuation = ';:,.!?¡¿—…"«»“” '
|
||||
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
||||
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
||||
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
||||
dicts = {}
|
||||
for i in range(len((symbols))):
|
||||
dicts[symbols[i]] = i
|
||||
return dicts
|
||||
|
||||
VOCAB = get_vocab()
|
||||
def tokenize(ps):
|
||||
return [i for i in map(VOCAB.get, ps) if i is not None]
|
||||
|
||||
phonemizers = dict(
|
||||
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
|
||||
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
|
||||
)
|
||||
def phonemize(text, lang, norm=True):
|
||||
if norm:
|
||||
text = normalize_text(text)
|
||||
ps = phonemizers[lang].phonemize([text])
|
||||
ps = ps[0] if ps else ''
|
||||
# https://en.wiktionary.org/wiki/kokoro#English
|
||||
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
||||
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
||||
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
||||
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
||||
if lang == 'a':
|
||||
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
||||
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
||||
return ps.strip()
|
||||
|
||||
def length_to_mask(lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(model, tokens, ref_s, speed):
|
||||
device = ref_s.device
|
||||
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
||||
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
||||
text_mask = length_to_mask(input_lengths).to(device)
|
||||
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
||||
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
||||
s = ref_s[:, 128:]
|
||||
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
||||
x, _ = model.predictor.lstm(d)
|
||||
duration = model.predictor.duration_proj(x)
|
||||
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
||||
pred_dur = torch.round(duration).clamp(min=1).long()
|
||||
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
||||
c_frame = 0
|
||||
for i in range(pred_aln_trg.size(0)):
|
||||
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
||||
c_frame += pred_dur[0,i].item()
|
||||
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
||||
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
||||
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
||||
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
||||
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
||||
|
||||
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
||||
ps = ps or phonemize(text, lang)
|
||||
tokens = tokenize(ps)
|
||||
if not tokens:
|
||||
return None
|
||||
elif len(tokens) > 510:
|
||||
tokens = tokens[:510]
|
||||
print('Truncated to 510 tokens')
|
||||
ref_s = voicepack[len(tokens)]
|
||||
out = forward(model, tokens, ref_s, speed)
|
||||
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
||||
return out, ps
|
||||
|
||||
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
|
||||
ps = ps or phonemize(text, lang)
|
||||
tokens = tokenize(ps)
|
||||
if not tokens:
|
||||
return None
|
||||
outs = []
|
||||
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
|
||||
for i in range(loop_count):
|
||||
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
|
||||
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
|
||||
outs.append(out)
|
||||
outs = np.concatenate(outs)
|
||||
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
||||
return outs, ps
|
373
backend/python/kokoro/models.py
Normal file
373
backend/python/kokoro/models.py
Normal file
@ -0,0 +1,373 @@
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/models.py
|
||||
from istftnet import AdaIN1d, Decoder
|
||||
from munch import Munch
|
||||
from pathlib import Path
|
||||
from plbert import load_plbert
|
||||
from torch.nn.utils import weight_norm, spectral_norm
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
import os.path as osp
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class LinearNorm(torch.nn.Module):
|
||||
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
||||
super(LinearNorm, self).__init__()
|
||||
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
||||
|
||||
torch.nn.init.xavier_uniform_(
|
||||
self.linear_layer.weight,
|
||||
gain=torch.nn.init.calculate_gain(w_init_gain))
|
||||
|
||||
def forward(self, x):
|
||||
return self.linear_layer(x)
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(n_symbols, channels)
|
||||
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.cnn = nn.ModuleList()
|
||||
for _ in range(depth):
|
||||
self.cnn.append(nn.Sequential(
|
||||
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
||||
LayerNorm(channels),
|
||||
actv,
|
||||
nn.Dropout(0.2),
|
||||
))
|
||||
# self.cnn = nn.Sequential(*self.cnn)
|
||||
|
||||
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
||||
|
||||
def forward(self, x, input_lengths, m):
|
||||
x = self.embedding(x) # [B, T, emb]
|
||||
x = x.transpose(1, 2) # [B, emb, T]
|
||||
m = m.to(input_lengths.device).unsqueeze(1)
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
for c in self.cnn:
|
||||
x = c(x)
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
x = x.transpose(1, 2) # [B, T, chn]
|
||||
|
||||
input_lengths = input_lengths.cpu().numpy()
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
|
||||
x = x.transpose(-1, -2)
|
||||
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||
|
||||
x_pad[:, :, :x.shape[-1]] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
return x
|
||||
|
||||
def inference(self, x):
|
||||
x = self.embedding(x)
|
||||
x = x.transpose(1, 2)
|
||||
x = self.cnn(x)
|
||||
x = x.transpose(1, 2)
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
return x
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, layer_type):
|
||||
super().__init__()
|
||||
self.layer_type = layer_type
|
||||
|
||||
def forward(self, x):
|
||||
if self.layer_type == 'none':
|
||||
return x
|
||||
else:
|
||||
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
|
||||
class AdainResBlk1d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||
upsample='none', dropout_p=0.0):
|
||||
super().__init__()
|
||||
self.actv = actv
|
||||
self.upsample_type = upsample
|
||||
self.upsample = UpSample1d(upsample)
|
||||
self.learned_sc = dim_in != dim_out
|
||||
self._build_weights(dim_in, dim_out, style_dim)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
if upsample == 'none':
|
||||
self.pool = nn.Identity()
|
||||
else:
|
||||
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||
|
||||
|
||||
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||
if self.learned_sc:
|
||||
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||
|
||||
def _shortcut(self, x):
|
||||
x = self.upsample(x)
|
||||
if self.learned_sc:
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
def _residual(self, x, s):
|
||||
x = self.norm1(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.pool(x)
|
||||
x = self.conv1(self.dropout(x))
|
||||
x = self.norm2(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.conv2(self.dropout(x))
|
||||
return x
|
||||
|
||||
def forward(self, x, s):
|
||||
out = self._residual(x, s)
|
||||
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||
return out
|
||||
|
||||
class AdaLayerNorm(nn.Module):
|
||||
def __init__(self, style_dim, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.fc = nn.Linear(style_dim, channels*2)
|
||||
|
||||
def forward(self, x, s):
|
||||
x = x.transpose(-1, -2)
|
||||
x = x.transpose(1, -1)
|
||||
|
||||
h = self.fc(s)
|
||||
h = h.view(h.size(0), h.size(1), 1)
|
||||
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
||||
|
||||
|
||||
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
||||
x = (1 + gamma) * x + beta
|
||||
return x.transpose(1, -1).transpose(-1, -2)
|
||||
|
||||
class ProsodyPredictor(nn.Module):
|
||||
|
||||
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
||||
super().__init__()
|
||||
|
||||
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
||||
d_model=d_hid,
|
||||
nlayers=nlayers,
|
||||
dropout=dropout)
|
||||
|
||||
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||
self.duration_proj = LinearNorm(d_hid, max_dur)
|
||||
|
||||
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||
self.F0 = nn.ModuleList()
|
||||
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||
|
||||
self.N = nn.ModuleList()
|
||||
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||
|
||||
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||
|
||||
|
||||
def forward(self, texts, style, text_lengths, alignment, m):
|
||||
d = self.text_encoder(texts, style, text_lengths, m)
|
||||
|
||||
batch_size = d.shape[0]
|
||||
text_size = d.shape[1]
|
||||
|
||||
# predict duration
|
||||
input_lengths = text_lengths.cpu().numpy()
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
d, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
|
||||
m = m.to(text_lengths.device).unsqueeze(1)
|
||||
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
|
||||
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
||||
|
||||
x_pad[:, :x.shape[1], :] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
||||
|
||||
en = (d.transpose(-1, -2) @ alignment)
|
||||
|
||||
return duration.squeeze(-1), en
|
||||
|
||||
def F0Ntrain(self, x, s):
|
||||
x, _ = self.shared(x.transpose(-1, -2))
|
||||
|
||||
F0 = x.transpose(-1, -2)
|
||||
for block in self.F0:
|
||||
F0 = block(F0, s)
|
||||
F0 = self.F0_proj(F0)
|
||||
|
||||
N = x.transpose(-1, -2)
|
||||
for block in self.N:
|
||||
N = block(N, s)
|
||||
N = self.N_proj(N)
|
||||
|
||||
return F0.squeeze(1), N.squeeze(1)
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
class DurationEncoder(nn.Module):
|
||||
|
||||
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
||||
super().__init__()
|
||||
self.lstms = nn.ModuleList()
|
||||
for _ in range(nlayers):
|
||||
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
||||
d_model // 2,
|
||||
num_layers=1,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
dropout=dropout))
|
||||
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
||||
|
||||
|
||||
self.dropout = dropout
|
||||
self.d_model = d_model
|
||||
self.sty_dim = sty_dim
|
||||
|
||||
def forward(self, x, style, text_lengths, m):
|
||||
masks = m.to(text_lengths.device)
|
||||
|
||||
x = x.permute(2, 0, 1)
|
||||
s = style.expand(x.shape[0], x.shape[1], -1)
|
||||
x = torch.cat([x, s], axis=-1)
|
||||
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
||||
|
||||
x = x.transpose(0, 1)
|
||||
input_lengths = text_lengths.cpu().numpy()
|
||||
x = x.transpose(-1, -2)
|
||||
|
||||
for block in self.lstms:
|
||||
if isinstance(block, AdaLayerNorm):
|
||||
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
||||
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
||||
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
||||
else:
|
||||
x = x.transpose(-1, -2)
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
block.flatten_parameters()
|
||||
x, _ = block(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
x = F.dropout(x, p=self.dropout, training=self.training)
|
||||
x = x.transpose(-1, -2)
|
||||
|
||||
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||
|
||||
x_pad[:, :, :x.shape[-1]] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
return x.transpose(-1, -2)
|
||||
|
||||
def inference(self, x, style):
|
||||
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
||||
style = style.expand(x.shape[0], x.shape[1], -1)
|
||||
x = torch.cat([x, style], axis=-1)
|
||||
src = self.pos_encoder(x)
|
||||
output = self.transformer_encoder(src).transpose(0, 1)
|
||||
return output
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
||||
def recursive_munch(d):
|
||||
if isinstance(d, dict):
|
||||
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
||||
elif isinstance(d, list):
|
||||
return [recursive_munch(v) for v in d]
|
||||
else:
|
||||
return d
|
||||
|
||||
def build_model(path, device):
|
||||
config = Path(__file__).parent / 'config.json'
|
||||
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
||||
with open(config, 'r') as r:
|
||||
args = recursive_munch(json.load(r))
|
||||
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
||||
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
||||
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
||||
upsample_rates = args.decoder.upsample_rates,
|
||||
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
||||
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
||||
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
||||
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
||||
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
||||
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
||||
bert = load_plbert()
|
||||
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
||||
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
||||
for child in parent.children():
|
||||
if isinstance(child, nn.RNNBase):
|
||||
child.flatten_parameters()
|
||||
model = Munch(
|
||||
bert=bert.to(device).eval(),
|
||||
bert_encoder=bert_encoder.to(device).eval(),
|
||||
predictor=predictor.to(device).eval(),
|
||||
decoder=decoder.to(device).eval(),
|
||||
text_encoder=text_encoder.to(device).eval(),
|
||||
)
|
||||
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
||||
assert key in model, key
|
||||
try:
|
||||
model[key].load_state_dict(state_dict)
|
||||
except:
|
||||
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
||||
model[key].load_state_dict(state_dict, strict=False)
|
||||
return model
|
16
backend/python/kokoro/plbert.py
Normal file
16
backend/python/kokoro/plbert.py
Normal file
@ -0,0 +1,16 @@
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/plbert.py
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
|
||||
from transformers import AlbertConfig, AlbertModel
|
||||
|
||||
class CustomAlbert(AlbertModel):
|
||||
def forward(self, *args, **kwargs):
|
||||
# Call the original forward method
|
||||
outputs = super().forward(*args, **kwargs)
|
||||
# Only return the last_hidden_state
|
||||
return outputs.last_hidden_state
|
||||
|
||||
def load_plbert():
|
||||
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
|
||||
albert_base_configuration = AlbertConfig(**plbert_config)
|
||||
bert = CustomAlbert(albert_base_configuration)
|
||||
return bert
|
6
backend/python/kokoro/protogen.sh
Normal file
6
backend/python/kokoro/protogen.sh
Normal file
@ -0,0 +1,6 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
2
backend/python/kokoro/requirements-cpu.txt
Normal file
2
backend/python/kokoro/requirements-cpu.txt
Normal file
@ -0,0 +1,2 @@
|
||||
torch==2.4.1
|
||||
transformers
|
3
backend/python/kokoro/requirements-cublas11.txt
Normal file
3
backend/python/kokoro/requirements-cublas11.txt
Normal file
@ -0,0 +1,3 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.4.1+cu118
|
||||
transformers
|
2
backend/python/kokoro/requirements-cublas12.txt
Normal file
2
backend/python/kokoro/requirements-cublas12.txt
Normal file
@ -0,0 +1,2 @@
|
||||
torch==2.4.1
|
||||
transformers
|
3
backend/python/kokoro/requirements-hipblas.txt
Normal file
3
backend/python/kokoro/requirements-hipblas.txt
Normal file
@ -0,0 +1,3 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.0
|
||||
torch==2.4.1+rocm6.0
|
||||
transformers
|
5
backend/python/kokoro/requirements-intel.txt
Normal file
5
backend/python/kokoro/requirements-intel.txt
Normal file
@ -0,0 +1,5 @@
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
intel-extension-for-pytorch==2.3.110+xpu
|
||||
torch==2.3.1+cxx11.abi
|
||||
oneccl_bind_pt==2.3.100+xpu
|
||||
transformers
|
7
backend/python/kokoro/requirements.txt
Normal file
7
backend/python/kokoro/requirements.txt
Normal file
@ -0,0 +1,7 @@
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
phonemizer
|
||||
scipy
|
||||
munch
|
||||
setuptools
|
||||
soundfile
|
4
backend/python/kokoro/run.sh
Executable file
4
backend/python/kokoro/run.sh
Executable file
@ -0,0 +1,4 @@
|
||||
#!/bin/bash
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
startBackend $@
|
6
backend/python/kokoro/test.sh
Executable file
6
backend/python/kokoro/test.sh
Executable file
@ -0,0 +1,6 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
runUnittests
|
@ -54,6 +54,8 @@ var knownModelsNameSuffixToSkip []string = []string{
|
||||
".yml",
|
||||
".json",
|
||||
".txt",
|
||||
".pt",
|
||||
".onnx",
|
||||
".md",
|
||||
".MD",
|
||||
".DS_Store",
|
||||
|
Loading…
Reference in New Issue
Block a user