feat(transformers): merge musicgen functionalities to a single backend (#4620)

* feat(transformers): merge musicgen functionalities to a single backend

So we optimize space

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* specify type in tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Some adaptations for the MusicgenForConditionalGeneration type

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2025-01-17 17:01:16 +01:00 committed by GitHub
parent 212c8e1a6d
commit 8027fdf1c7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 187 additions and 414 deletions

View File

@ -16,7 +16,7 @@ headers {
body:json {
{
"backend": "transformers-musicgen",
"backend": "transformers",
"model": "facebook/musicgen-small",
"input": "80s Synths playing Jazz"
}

View File

@ -81,10 +81,6 @@ updates:
directory: "/backend/python/transformers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/transformers-musicgen"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vllm"
schedule:

View File

@ -153,27 +153,27 @@ jobs:
make --jobs=5 --output-sync=target -C backend/python/openvoice
make --jobs=5 --output-sync=target -C backend/python/openvoice test
tests-transformers-musicgen:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
# tests-transformers-musicgen:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test transformers-musicgen
run: |
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# - name: Test transformers-musicgen
# run: |
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# tests-bark:
# runs-on: ubuntu-latest

View File

@ -15,7 +15,7 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \
@ -448,9 +448,6 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAG
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/diffusers \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers-musicgen \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \

View File

@ -583,10 +583,10 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen kokoro-protogen vllm-protogen openvoice-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen kokoro-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean kokoro-protogen-clean vllm-protogen-clean openvoice-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean parler-tts-protogen-clean kokoro-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
@ -668,14 +668,6 @@ parler-tts-protogen:
parler-tts-protogen-clean:
$(MAKE) -C backend/python/parler-tts protogen-clean
.PHONY: transformers-musicgen-protogen
transformers-musicgen-protogen:
$(MAKE) -C backend/python/transformers-musicgen protogen
.PHONY: transformers-musicgen-protogen-clean
transformers-musicgen-protogen-clean:
$(MAKE) -C backend/python/transformers-musicgen protogen-clean
.PHONY: kokoro-protogen
kokoro-protogen:
$(MAKE) -C backend/python/kokoro protogen
@ -712,7 +704,6 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/sentencetransformers
$(MAKE) -C backend/python/rerankers
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/transformers-musicgen
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/kokoro
$(MAKE) -C backend/python/openvoice

View File

@ -1,29 +0,0 @@
.PHONY: transformers-musicgen
transformers-musicgen: protogen
bash install.sh
.PHONY: run
run: protogen
@echo "Running transformers..."
bash run.sh
@echo "transformers run."
.PHONY: test
test: protogen
@echo "Testing transformers..."
bash test.sh
@echo "transformers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@ -1,5 +0,0 @@
# Creating a separate environment for the transformers project
```
make transformers-musicgen
```

View File

@ -1,176 +0,0 @@
#!/usr/bin/env python3
"""
Extra gRPC server for MusicgenForConditionalGeneration models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from scipy.io import wavfile
from transformers import AutoProcessor, MusicgenForConditionalGeneration
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def SoundGeneration(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = None
if request.text == "":
inputs = self.model.get_unconditional_inputs(num_samples=1)
elif request.HasField('src'):
# TODO SECURITY CODE GOES HERE LOL
# WHO KNOWS IF THIS WORKS???
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
if request.HasField('src_divisor'):
wsamples = wsamples[: len(wsamples) // request.src_divisor]
inputs = self.processor(
audio=wsamples,
sampling_rate=sample_rate,
text=[request.text],
padding=True,
return_tensors="pt",
)
else:
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
write_wav(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("[transformers-musicgen] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("[transformers-musicgen] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[transformers-musicgen] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@ -1,14 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
installRequirements

View File

@ -1,3 +0,0 @@
transformers
accelerate
torch==2.4.1

View File

@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
transformers
accelerate
torch==2.4.1+cu118

View File

@ -1,3 +0,0 @@
transformers
accelerate
torch==2.4.1

View File

@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
transformers
accelerate
torch==2.4.1+rocm6.0

View File

@ -1,8 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
transformers
oneccl_bind_pt==2.3.100+xpu
accelerate
torch==2.3.1+cxx11.abi
optimum[openvino]
setuptools

View File

@ -1,4 +0,0 @@
grpcio==1.69.0
protobuf
scipy==1.14.0
certifi

View File

@ -1,4 +0,0 @@
#!/bin/bash
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View File

@ -1,100 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if TTS is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
def test_sound_generation(self):
"""
This method tests if SoundGeneration is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
sg_request = backend_pb2.SoundGenerationRequest(text="80s TV news production music hit for tonight's biggest story")
sg_response = stub.SoundGeneration(sg_request)
self.assertIsNotNone(sg_response)
except Exception as err:
print(err)
self.fail("SoundGeneration service failed")
finally:
self.tearDown()

View File

@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@ -22,6 +22,8 @@ import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
from transformers import AutoProcessor, MusicgenForConditionalGeneration
from scipy.io import wavfile
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -191,6 +193,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
export=True,
device=device_map)
self.OV = True
elif request.Type == "MusicgenForConditionalGeneration":
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
else:
print("Automodel", file=sys.stderr)
self.model = AutoModel.from_pretrained(model_name,
@ -201,19 +206,22 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torch_dtype=compute)
if request.ContextSize > 0:
self.max_tokens = request.ContextSize
else:
elif request.Type != "MusicgenForConditionalGeneration":
self.max_tokens = self.model.config.max_position_embeddings
else:
self.max_tokens = 512
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if request.Type != "MusicgenForConditionalGeneration":
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
except Exception as err:
print("Error:", err, file=sys.stderr)
@ -380,6 +388,93 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
finally:
await iterations.aclose()
def SoundGeneration(self, request, context):
model_name = request.model
try:
if self.processor is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.processor = AutoProcessor.from_pretrained(model_name)
if self.model is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = None
if request.text == "":
inputs = self.model.get_unconditional_inputs(num_samples=1)
elif request.HasField('src'):
# TODO SECURITY CODE GOES HERE LOL
# WHO KNOWS IF THIS WORKS???
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
if request.HasField('src_divisor'):
wsamples = wsamples[: len(wsamples) // request.src_divisor]
inputs = self.processor(
audio=wsamples,
sampling_rate=sample_rate,
text=[request.text],
padding=True,
return_tensors="pt",
)
else:
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
model_name = request.model
try:
if self.processor is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.processor = AutoProcessor.from_pretrained(model_name)
if self.model is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))

View File

@ -1,4 +1,5 @@
grpcio==1.69.0
protobuf
certifi
setuptools
setuptools
scipy==1.14.0

View File

@ -19,6 +19,7 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
@ -31,7 +32,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the server starts up successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@ -48,7 +48,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the model is loaded successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@ -66,7 +65,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the embeddings are generated successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@ -80,5 +78,60 @@ class TestBackendServicer(unittest.TestCase):
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()
def test_audio_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small",Type="MusicgenForConditionalGeneration"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if TTS is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small",Type="MusicgenForConditionalGeneration"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
def test_sound_generation(self):
"""
This method tests if SoundGeneration is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small",Type="MusicgenForConditionalGeneration"))
self.assertTrue(response.success)
sg_request = backend_pb2.SoundGenerationRequest(text="80s TV news production music hit for tonight's biggest story")
sg_response = stub.SoundGeneration(sg_request)
self.assertIsNotNone(sg_response)
except Exception as err:
print(err)
self.fail("SoundGeneration service failed")
finally:
self.tearDown()