feat(vllm): add support for embeddings (#3440)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-09-02 21:44:32 +02:00 committed by GitHub
parent 56db715a91
commit 68fc014c6d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 43 additions and 0 deletions

View File

@ -135,6 +135,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
res = await gen.__anext__()
return res
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
outputs = self.model.encode(request.Embeddings)
# Check if we have one result at least
if len(outputs) == 0:
context.set_code(grpc.StatusCode.INVALID_ARGUMENT)
context.set_details("No embeddings were calculated.")
return backend_pb2.EmbeddingResult()
return backend_pb2.EmbeddingResult(embeddings=outputs[0].outputs.embedding)
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.

View File

@ -72,5 +72,28 @@ class TestBackendServicer(unittest.TestCase):
except Exception as err:
print(err)
self.fail("text service failed")
finally:
self.tearDown()
def test_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="intfloat/e5-mistral-7b-instruct"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
# assert that is a list of floats
self.assertIsInstance(embedding_response.embeddings, list)
# assert that the list is not empty
self.assertTrue(len(embedding_response.embeddings) > 0)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()