mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-10 15:02:41 +00:00
chore(deps): bump llama-cpp to 96776405a17034dcfd53d3ddf5d142d34bdbb657 (#3793)
This adapts also to upstream changes Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
65ca754166
commit
6257e2f510
2
Makefile
2
Makefile
@ -8,7 +8,7 @@ DETECT_LIBS?=true
|
|||||||
# llama.cpp versions
|
# llama.cpp versions
|
||||||
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
|
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
|
||||||
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
|
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
|
||||||
CPPLLAMA_VERSION?=0e9f760eb12546704ef8fa72577bc1a3ffe1bc04
|
CPPLLAMA_VERSION?=96776405a17034dcfd53d3ddf5d142d34bdbb657
|
||||||
|
|
||||||
# go-rwkv version
|
# go-rwkv version
|
||||||
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||||
|
@ -113,7 +113,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
|||||||
std::string ret;
|
std::string ret;
|
||||||
for (; begin != end; ++begin)
|
for (; begin != end; ++begin)
|
||||||
{
|
{
|
||||||
ret += llama_token_to_piece(ctx, *begin);
|
ret += common_token_to_piece(ctx, *begin);
|
||||||
}
|
}
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
@ -121,7 +121,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
|||||||
// format incomplete utf-8 multibyte character for output
|
// format incomplete utf-8 multibyte character for output
|
||||||
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
||||||
{
|
{
|
||||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
|
||||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||||
// (size > 1 meaning it's already a known token)
|
// (size > 1 meaning it's already a known token)
|
||||||
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
||||||
@ -203,8 +203,8 @@ struct llama_client_slot
|
|||||||
std::string stopping_word;
|
std::string stopping_word;
|
||||||
|
|
||||||
// sampling
|
// sampling
|
||||||
struct gpt_sampler_params sparams;
|
struct common_sampler_params sparams;
|
||||||
gpt_sampler *ctx_sampling = nullptr;
|
common_sampler *ctx_sampling = nullptr;
|
||||||
|
|
||||||
int32_t ga_i = 0; // group-attention state
|
int32_t ga_i = 0; // group-attention state
|
||||||
int32_t ga_n = 1; // group-attention factor
|
int32_t ga_n = 1; // group-attention factor
|
||||||
@ -257,7 +257,7 @@ struct llama_client_slot
|
|||||||
images.clear();
|
images.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
bool has_budget(gpt_params &global_params) {
|
bool has_budget(common_params &global_params) {
|
||||||
if (params.n_predict == -1 && global_params.n_predict == -1)
|
if (params.n_predict == -1 && global_params.n_predict == -1)
|
||||||
{
|
{
|
||||||
return true; // limitless
|
return true; // limitless
|
||||||
@ -398,7 +398,7 @@ struct llama_server_context
|
|||||||
|
|
||||||
clip_ctx *clp_ctx = nullptr;
|
clip_ctx *clp_ctx = nullptr;
|
||||||
|
|
||||||
gpt_params params;
|
common_params params;
|
||||||
|
|
||||||
llama_batch batch;
|
llama_batch batch;
|
||||||
|
|
||||||
@ -441,7 +441,7 @@ struct llama_server_context
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool load_model(const gpt_params ¶ms_)
|
bool load_model(const common_params ¶ms_)
|
||||||
{
|
{
|
||||||
params = params_;
|
params = params_;
|
||||||
if (!params.mmproj.empty()) {
|
if (!params.mmproj.empty()) {
|
||||||
@ -458,9 +458,9 @@ struct llama_server_context
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
common_init_result common_init = common_init_from_params(params);
|
||||||
model = llama_init.model;
|
model = common_init.model;
|
||||||
ctx = llama_init.context;
|
ctx = common_init.context;
|
||||||
if (model == nullptr)
|
if (model == nullptr)
|
||||||
{
|
{
|
||||||
LOG_ERR("unable to load model: %s", params.model.c_str());
|
LOG_ERR("unable to load model: %s", params.model.c_str());
|
||||||
@ -578,12 +578,12 @@ struct llama_server_context
|
|||||||
std::vector<llama_token> p;
|
std::vector<llama_token> p;
|
||||||
if (first)
|
if (first)
|
||||||
{
|
{
|
||||||
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
p = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
||||||
first = false;
|
first = false;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
||||||
}
|
}
|
||||||
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
||||||
}
|
}
|
||||||
@ -600,7 +600,7 @@ struct llama_server_context
|
|||||||
else
|
else
|
||||||
{
|
{
|
||||||
auto s = json_prompt.template get<std::string>();
|
auto s = json_prompt.template get<std::string>();
|
||||||
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
prompt_tokens = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
||||||
}
|
}
|
||||||
|
|
||||||
return prompt_tokens;
|
return prompt_tokens;
|
||||||
@ -629,7 +629,7 @@ struct llama_server_context
|
|||||||
|
|
||||||
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
||||||
slot_params default_params;
|
slot_params default_params;
|
||||||
gpt_sampler_params default_sparams;
|
common_sampler_params default_sparams;
|
||||||
|
|
||||||
slot->params.stream = json_value(data, "stream", false);
|
slot->params.stream = json_value(data, "stream", false);
|
||||||
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
||||||
@ -769,7 +769,7 @@ struct llama_server_context
|
|||||||
}
|
}
|
||||||
else if (el[0].is_string())
|
else if (el[0].is_string())
|
||||||
{
|
{
|
||||||
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
|
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
|
||||||
for (auto tok : toks)
|
for (auto tok : toks)
|
||||||
{
|
{
|
||||||
slot->sparams.logit_bias.push_back({tok, bias});
|
slot->sparams.logit_bias.push_back({tok, bias});
|
||||||
@ -801,7 +801,7 @@ struct llama_server_context
|
|||||||
sampler_names.emplace_back(name);
|
sampler_names.emplace_back(name);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
slot->sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
|
slot->sparams.samplers = common_sampler_types_from_names(sampler_names, false);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
@ -885,9 +885,9 @@ struct llama_server_context
|
|||||||
|
|
||||||
if (slot->ctx_sampling != nullptr)
|
if (slot->ctx_sampling != nullptr)
|
||||||
{
|
{
|
||||||
gpt_sampler_free(slot->ctx_sampling);
|
common_sampler_free(slot->ctx_sampling);
|
||||||
}
|
}
|
||||||
slot->ctx_sampling = gpt_sampler_init(model, slot->sparams);
|
slot->ctx_sampling = common_sampler_init(model, slot->sparams);
|
||||||
//llama_set_rng_seed(ctx, slot->params.seed);
|
//llama_set_rng_seed(ctx, slot->params.seed);
|
||||||
slot->command = LOAD_PROMPT;
|
slot->command = LOAD_PROMPT;
|
||||||
|
|
||||||
@ -914,13 +914,13 @@ struct llama_server_context
|
|||||||
system_tokens.clear();
|
system_tokens.clear();
|
||||||
|
|
||||||
if (!system_prompt.empty()) {
|
if (!system_prompt.empty()) {
|
||||||
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
system_tokens = common_tokenize(ctx, system_prompt, add_bos_token);
|
||||||
|
|
||||||
llama_batch_clear(batch);
|
common_batch_clear(batch);
|
||||||
|
|
||||||
for (int i = 0; i < (int)system_tokens.size(); ++i)
|
for (int i = 0; i < (int)system_tokens.size(); ++i)
|
||||||
{
|
{
|
||||||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
common_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
|
||||||
@ -1009,7 +1009,7 @@ struct llama_server_context
|
|||||||
|
|
||||||
bool process_token(completion_token_output &result, llama_client_slot &slot) {
|
bool process_token(completion_token_output &result, llama_client_slot &slot) {
|
||||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||||
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
const std::string token_str = common_token_to_piece(ctx, result.tok);
|
||||||
slot.sampled = result.tok;
|
slot.sampled = result.tok;
|
||||||
|
|
||||||
// search stop word and delete it
|
// search stop word and delete it
|
||||||
@ -1160,7 +1160,7 @@ struct llama_server_context
|
|||||||
samplers.reserve(slot.sparams.samplers.size());
|
samplers.reserve(slot.sparams.samplers.size());
|
||||||
for (const auto & sampler : slot.sparams.samplers)
|
for (const auto & sampler : slot.sparams.samplers)
|
||||||
{
|
{
|
||||||
samplers.emplace_back(gpt_sampler_type_to_str(sampler));
|
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
||||||
}
|
}
|
||||||
|
|
||||||
return json {
|
return json {
|
||||||
@ -1216,7 +1216,7 @@ struct llama_server_context
|
|||||||
if (slot.sparams.n_probs > 0)
|
if (slot.sparams.n_probs > 0)
|
||||||
{
|
{
|
||||||
std::vector<completion_token_output> probs_output = {};
|
std::vector<completion_token_output> probs_output = {};
|
||||||
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
|
||||||
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
|
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
|
||||||
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
|
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
|
||||||
if (probs_pos < probs_stop_pos)
|
if (probs_pos < probs_stop_pos)
|
||||||
@ -1268,7 +1268,7 @@ struct llama_server_context
|
|||||||
std::vector<completion_token_output> probs = {};
|
std::vector<completion_token_output> probs = {};
|
||||||
if (!slot.params.stream && slot.stopped_word)
|
if (!slot.params.stream && slot.stopped_word)
|
||||||
{
|
{
|
||||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
|
||||||
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
|
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@ -1408,7 +1408,7 @@ struct llama_server_context
|
|||||||
}
|
}
|
||||||
image_idx++;
|
image_idx++;
|
||||||
|
|
||||||
llama_batch_clear(batch);
|
common_batch_clear(batch);
|
||||||
|
|
||||||
// append prefix of next image
|
// append prefix of next image
|
||||||
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
|
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
|
||||||
@ -1418,7 +1418,7 @@ struct llama_server_context
|
|||||||
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
||||||
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
||||||
{
|
{
|
||||||
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
|
common_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
|
||||||
slot.n_past += 1;
|
slot.n_past += 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1550,7 +1550,7 @@ struct llama_server_context
|
|||||||
update_system_prompt();
|
update_system_prompt();
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_batch_clear(batch);
|
common_batch_clear(batch);
|
||||||
|
|
||||||
if (all_slots_are_idle)
|
if (all_slots_are_idle)
|
||||||
{
|
{
|
||||||
@ -1628,7 +1628,7 @@ struct llama_server_context
|
|||||||
|
|
||||||
// TODO: we always have to take into account the "system_tokens"
|
// TODO: we always have to take into account the "system_tokens"
|
||||||
// this is not great and needs to be improved somehow
|
// this is not great and needs to be improved somehow
|
||||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||||
slot.n_past += 1;
|
slot.n_past += 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1722,7 +1722,7 @@ struct llama_server_context
|
|||||||
|
|
||||||
if (!slot.params.cache_prompt)
|
if (!slot.params.cache_prompt)
|
||||||
{
|
{
|
||||||
gpt_sampler_reset(slot.ctx_sampling);
|
common_sampler_reset(slot.ctx_sampling);
|
||||||
|
|
||||||
slot.n_past = 0;
|
slot.n_past = 0;
|
||||||
slot.n_past_se = 0;
|
slot.n_past_se = 0;
|
||||||
@ -1734,7 +1734,7 @@ struct llama_server_context
|
|||||||
// push the prompt into the sampling context (do not apply grammar)
|
// push the prompt into the sampling context (do not apply grammar)
|
||||||
for (auto &token : prompt_tokens)
|
for (auto &token : prompt_tokens)
|
||||||
{
|
{
|
||||||
gpt_sampler_accept(slot.ctx_sampling, token, false);
|
common_sampler_accept(slot.ctx_sampling, token, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
||||||
@ -1826,7 +1826,7 @@ struct llama_server_context
|
|||||||
ga_i += ga_w/ga_n;
|
ga_i += ga_w/ga_n;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
|
common_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
|
||||||
slot_npast++;
|
slot_npast++;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1943,9 +1943,9 @@ struct llama_server_context
|
|||||||
}
|
}
|
||||||
|
|
||||||
completion_token_output result;
|
completion_token_output result;
|
||||||
const llama_token id = gpt_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i);
|
const llama_token id = common_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i);
|
||||||
|
|
||||||
gpt_sampler_accept(slot.ctx_sampling, id, true);
|
common_sampler_accept(slot.ctx_sampling, id, true);
|
||||||
|
|
||||||
slot.n_decoded += 1;
|
slot.n_decoded += 1;
|
||||||
if (slot.n_decoded == 1)
|
if (slot.n_decoded == 1)
|
||||||
@ -1956,7 +1956,7 @@ struct llama_server_context
|
|||||||
}
|
}
|
||||||
|
|
||||||
result.tok = id;
|
result.tok = id;
|
||||||
const auto * cur_p = gpt_sampler_get_candidates(slot.ctx_sampling);
|
const auto * cur_p = common_sampler_get_candidates(slot.ctx_sampling);
|
||||||
|
|
||||||
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
|
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
|
||||||
result.probs.push_back({
|
result.probs.push_back({
|
||||||
@ -2009,7 +2009,7 @@ static json format_partial_response(
|
|||||||
struct token_translator
|
struct token_translator
|
||||||
{
|
{
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
std::string operator()(llama_token tok) const { return common_token_to_piece(ctx, tok); }
|
||||||
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -2203,7 +2203,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
|
|||||||
// }
|
// }
|
||||||
|
|
||||||
static void params_parse(const backend::ModelOptions* request,
|
static void params_parse(const backend::ModelOptions* request,
|
||||||
gpt_params & params) {
|
common_params & params) {
|
||||||
|
|
||||||
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
|
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
|
||||||
|
|
||||||
@ -2311,7 +2311,7 @@ public:
|
|||||||
|
|
||||||
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
|
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
|
||||||
// Implement LoadModel RPC
|
// Implement LoadModel RPC
|
||||||
gpt_params params;
|
common_params params;
|
||||||
params_parse(request, params);
|
params_parse(request, params);
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
|
Loading…
Reference in New Issue
Block a user