chore(model): add qwen2.5-7b-nerd-uncensored-v1.7 to the gallery (#4171)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-11-17 13:22:25 +01:00 committed by GitHub
parent a028d97888
commit 61e14ad10b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1404,6 +1404,29 @@
- filename: Athene-V2-Chat-Q4_K_M.gguf
sha256: bda8b784ad55982891e5aa69b08ce4030c91a2e28ad9c4c35284d45d3c7aeb16
uri: huggingface://bartowski/Athene-V2-Chat-GGUF/Athene-V2-Chat-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "qwen2.5-7b-nerd-uncensored-v1.7"
urls:
- https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.7
- https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v1.7-GGUF
description: |
Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like:
Input: Weight matrix for each model layer
Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension
Filter values above numerical threshold (>1e-12)
Sum all singular values: S = Σσᵢ # S acts as normalization factor
Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1
Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content
Calculate maximum possible entropy: H_max = log₂(n)
Final NER score = H/H_max # normalizes score to [0,1] range
Results in value between 0 and 1 for each model layer
overrides:
parameters:
model: Qwen2.5-7B-nerd-uncensored-v1.7.Q4_K_M.gguf
files:
- filename: Qwen2.5-7B-nerd-uncensored-v1.7.Q4_K_M.gguf
sha256: 42cf7a96784dc8f25c61c2404620c3e6548a024caa8dff6e435d7c86400d7ab8
uri: huggingface://mradermacher/Qwen2.5-7B-nerd-uncensored-v1.7-GGUF/Qwen2.5-7B-nerd-uncensored-v1.7.Q4_K_M.gguf
- &archfunct
license: apache-2.0
tags: