mirror of
https://github.com/mudler/LocalAI.git
synced 2025-02-21 09:41:45 +00:00
examples: add update index example, update README
This commit is contained in:
parent
6ed7b10273
commit
4f551ce414
@ -4,11 +4,17 @@ This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stab
|
|||||||
|
|
||||||
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html).
|
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html).
|
||||||
|
|
||||||
|
Summary of the steps:
|
||||||
|
|
||||||
|
- prepare the dataset (and store it into `data`)
|
||||||
|
- prepare a vector index database to run queries on
|
||||||
|
- run queries
|
||||||
|
|
||||||
## Requirements
|
## Requirements
|
||||||
|
|
||||||
For this in order to work, you will need a model compatible with the `llama.cpp` backend. This is will not work with gpt4all.
|
For this in order to work, you will need LocalAI and a model compatible with the `llama.cpp` backend. This is will not work with gpt4all, however you can mix models (use a llama.cpp one to build the index database, and gpt4all to query it).
|
||||||
|
|
||||||
The example uses `WizardLM`. Edit the config files in `models/` accordingly to specify the model you use (change `HERE`).
|
The example uses `WizardLM` for both embeddings and Q&A. Edit the config files in `models/` accordingly to specify the model you use (change `HERE` in the configuration files).
|
||||||
|
|
||||||
You will also need a training data set. Copy that over `data`.
|
You will also need a training data set. Copy that over `data`.
|
||||||
|
|
||||||
@ -28,7 +34,9 @@ cd LocalAI/examples/query_data
|
|||||||
docker-compose up -d --build
|
docker-compose up -d --build
|
||||||
```
|
```
|
||||||
|
|
||||||
### Create a storage:
|
### Create a storage
|
||||||
|
|
||||||
|
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export OPENAI_API_BASE=http://localhost:8080/v1
|
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||||
@ -41,9 +49,22 @@ After it finishes, a directory "storage" will be created with the vector index d
|
|||||||
|
|
||||||
## Query
|
## Query
|
||||||
|
|
||||||
|
We can now query the dataset.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export OPENAI_API_BASE=http://localhost:8080/v1
|
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||||
export OPENAI_API_KEY=sk-
|
export OPENAI_API_KEY=sk-
|
||||||
|
|
||||||
python query.py
|
python query.py
|
||||||
|
```
|
||||||
|
|
||||||
|
## Update
|
||||||
|
|
||||||
|
To update our vector database, run `update.py`
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||||
|
export OPENAI_API_KEY=sk-
|
||||||
|
|
||||||
|
python update.py
|
||||||
```
|
```
|
@ -29,5 +29,7 @@ storage_context = StorageContext.from_defaults(persist_dir='./storage')
|
|||||||
index = load_index_from_storage(storage_context, service_context=service_context, )
|
index = load_index_from_storage(storage_context, service_context=service_context, )
|
||||||
|
|
||||||
query_engine = index.as_query_engine()
|
query_engine = index.as_query_engine()
|
||||||
response = query_engine.query("XXXXXX your question here XXXXX")
|
|
||||||
print(response)
|
data = input("Question: ")
|
||||||
|
response = query_engine.query(data)
|
||||||
|
print(response)
|
||||||
|
32
examples/query_data/update.py
Normal file
32
examples/query_data/update.py
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
|
||||||
|
# os.environ['OPENAI_API_KEY']= ""
|
||||||
|
|
||||||
|
from llama_index import LLMPredictor, PromptHelper, SimpleDirectoryReader, ServiceContext
|
||||||
|
from langchain.llms.openai import OpenAI
|
||||||
|
from llama_index import StorageContext, load_index_from_storage
|
||||||
|
|
||||||
|
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||||
|
|
||||||
|
# This example uses text-davinci-003 by default; feel free to change if desired
|
||||||
|
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path))
|
||||||
|
|
||||||
|
# Configure prompt parameters and initialise helper
|
||||||
|
max_input_size = 1024
|
||||||
|
num_output = 256
|
||||||
|
max_chunk_overlap = 20
|
||||||
|
|
||||||
|
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
|
||||||
|
|
||||||
|
# Load documents from the 'data' directory
|
||||||
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
||||||
|
|
||||||
|
# rebuild storage context
|
||||||
|
storage_context = StorageContext.from_defaults(persist_dir='./storage')
|
||||||
|
|
||||||
|
# load index
|
||||||
|
index = load_index_from_storage(storage_context, service_context=service_context, )
|
||||||
|
documents = SimpleDirectoryReader('data').load_data()
|
||||||
|
index.refresh(documents)
|
||||||
|
index.storage_context.persist(persist_dir="./storage")
|
Loading…
x
Reference in New Issue
Block a user