Revert "Revert #1963 (#2056)"

This reverts commit af9e5a2d05.
This commit is contained in:
Ettore Di Giacinto 2024-04-17 23:36:17 +02:00 committed by GitHub
parent af9e5a2d05
commit 47743b74ab
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
52 changed files with 3052 additions and 2282 deletions

View File

@ -121,8 +121,9 @@ jobs:
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
uses: mxschmitt/action-tmate@v3.18
with:
connect-timeout-seconds: 180
tests-aio-container:
runs-on: ubuntu-latest
@ -173,8 +174,9 @@ jobs:
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
uses: mxschmitt/action-tmate@v3.18
with:
connect-timeout-seconds: 180
tests-apple:
runs-on: macOS-14
@ -207,5 +209,6 @@ jobs:
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
uses: mxschmitt/action-tmate@v3.18
with:
connect-timeout-seconds: 180

View File

@ -301,6 +301,9 @@ clean-tests:
rm -rf test-dir
rm -rf core/http/backend-assets
halt-backends: ## Used to clean up stray backends sometimes left running when debugging manually
ps | grep 'backend-assets/grpc/' | awk '{print $$1}' | xargs -I {} kill -9 {}
## Build:
build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
@ -365,13 +368,13 @@ run-e2e-image:
run-e2e-aio:
@echo 'Running e2e AIO tests'
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio
test-e2e:
@echo 'Running e2e tests'
BUILD_TYPE=$(BUILD_TYPE) \
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e
teardown-e2e:
rm -rf $(TEST_DIR) || true
@ -379,15 +382,15 @@ teardown-e2e:
test-gpt4all: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
test-tts: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
@ -645,7 +648,10 @@ backend-assets/grpc/llama-ggml: sources/go-llama-ggml sources/go-llama-ggml/libb
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
# EXPERIMENTAL:
ifeq ($(BUILD_TYPE),metal)
cp $(CURDIR)/sources/go-llama-ggml/llama.cpp/ggml-metal.metal backend-assets/grpc/
endif
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/

View File

@ -29,8 +29,8 @@ func audioToWav(src, dst string) error {
return nil
}
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.Result, error) {
res := schema.Result{}
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.TranscriptionResult, error) {
res := schema.TranscriptionResult{}
dir, err := os.MkdirTemp("", "whisper")
if err != nil {

View File

@ -21,6 +21,6 @@ func (sd *Whisper) Load(opts *pb.ModelOptions) error {
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.Result, error) {
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.TranscriptionResult, error) {
return Transcript(sd.whisper, opts.Dst, opts.Language, uint(opts.Threads))
}

View File

@ -2,14 +2,100 @@ package backend
import (
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
)
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
type EmbeddingsBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
}
func NewEmbeddingsBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *EmbeddingsBackendService {
return &EmbeddingsBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func (ebs *EmbeddingsBackendService) Embeddings(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
go func(request *schema.OpenAIRequest) {
if request.Model == "" {
request.Model = model.StableDiffusionBackend
}
bc, request, err := ebs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, ebs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
items := []schema.Item{}
for i, s := range bc.InputToken {
// get the model function to call for the result
embedFn, err := modelEmbedding("", s, ebs.ml, bc, ebs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
embeddings, err := embedFn()
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range bc.InputStrings {
// get the model function to call for the result
embedFn, err := modelEmbedding(s, []int{}, ebs.ml, bc, ebs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
embeddings, err := embedFn()
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
close(resultChannel)
}(request)
return resultChannel
}
func modelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
modelFile := backendConfig.Model
grpcOpts := gRPCModelOpts(backendConfig)

View File

@ -1,18 +1,252 @@
package backend
import (
"github.com/go-skynet/LocalAI/core/config"
"bufio"
"encoding/base64"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strconv"
"strings"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
type ImageGenerationBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
BaseUrlForGeneratedImages string
}
func NewImageGenerationBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ImageGenerationBackendService {
return &ImageGenerationBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func (igbs *ImageGenerationBackendService) GenerateImage(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
go func(request *schema.OpenAIRequest) {
bc, request, err := igbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, igbs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
src := ""
if request.File != "" {
var fileData []byte
// check if input.File is an URL, if so download it and save it
// to a temporary file
if strings.HasPrefix(request.File, "http://") || strings.HasPrefix(request.File, "https://") {
out, err := downloadFile(request.File)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed downloading file:%w", err)}
close(resultChannel)
return
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed reading file:%w", err)}
close(resultChannel)
return
}
} else {
// base 64 decode the file and write it somewhere
// that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(request.File)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
}
// Create a temporary file
outputFile, err := os.CreateTemp(igbs.appConfig.ImageDir, "b64")
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
outputFile.Close()
src = outputFile.Name()
defer os.RemoveAll(src)
}
log.Debug().Msgf("Parameter Config: %+v", bc)
switch bc.Backend {
case "stablediffusion":
bc.Backend = model.StableDiffusionBackend
case "tinydream":
bc.Backend = model.TinyDreamBackend
case "":
bc.Backend = model.StableDiffusionBackend
if bc.Model == "" {
bc.Model = "stablediffusion_assets" // TODO: check?
}
}
sizeParts := strings.Split(request.Size, "x")
if len(sizeParts) != 2 {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
close(resultChannel)
return
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
close(resultChannel)
return
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
close(resultChannel)
return
}
b64JSON := false
if request.ResponseFormat.Type == "b64_json" {
b64JSON = true
}
// src and clip_skip
var result []schema.Item
for _, i := range bc.PromptStrings {
n := request.N
if request.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
}
mode := 0
step := bc.Step
if step == 0 {
step = 15
}
if request.Mode != 0 {
mode = request.Mode
}
if request.Step != 0 {
step = request.Step
}
tempDir := ""
if !b64JSON {
tempDir = igbs.appConfig.ImageDir
}
// Create a temporary file
outputFile, err := os.CreateTemp(tempDir, "b64")
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
if request.Seed == nil {
zVal := 0 // Idiomatic way to do this? Actually needed?
request.Seed = &zVal
}
fn, err := imageGeneration(height, width, mode, step, *request.Seed, positive_prompt, negative_prompt, src, output, igbs.ml, bc, igbs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
if err := fn(); err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
item := &schema.Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = igbs.BaseUrlForGeneratedImages + base
}
result = append(result, *item)
}
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Data: result,
}
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
close(resultChannel)
}(request)
return resultChannel
}
func imageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
threads := backendConfig.Threads
if *threads == 0 && appConfig.Threads != 0 {
threads = &appConfig.Threads
}
gRPCOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(backendConfig.Backend),
model.WithAssetDir(appConfig.AssetsDestination),
@ -50,3 +284,24 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
return fn, nil
}
// TODO: Replace this function with pkg/downloader - no reason to have a (crappier) bespoke download file fn here, but get things working before that change.
func downloadFile(url string) (string, error) {
// Get the data
resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()
// Create the file
out, err := os.CreateTemp("", "image")
if err != nil {
return "", err
}
defer out.Close()
// Write the body to file
_, err = io.Copy(out, resp.Body)
return out.Name(), err
}

View File

@ -11,17 +11,22 @@ import (
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/rs/zerolog/log"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/grpc"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
type LLMResponse struct {
Response string // should this be []byte?
Usage TokenUsage
type LLMRequest struct {
Id int // TODO Remove if not used.
Text string
Images []string
RawMessages []schema.Message
// TODO: Other Modalities?
}
type TokenUsage struct {
@ -29,57 +34,94 @@ type TokenUsage struct {
Completion int
}
func ModelInference(ctx context.Context, s string, messages []schema.Message, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
threads := c.Threads
if *threads == 0 && o.Threads != 0 {
threads = &o.Threads
type LLMResponse struct {
Request *LLMRequest
Response string // should this be []byte?
Usage TokenUsage
}
grpcOpts := gRPCModelOpts(c)
// TODO: Does this belong here or in core/services/openai.go?
type LLMResponseBundle struct {
Request *schema.OpenAIRequest
Response []schema.Choice
Usage TokenUsage
}
type LLMBackendService struct {
bcl *config.BackendConfigLoader
ml *model.ModelLoader
appConfig *config.ApplicationConfig
ftMutex sync.Mutex
cutstrings map[string]*regexp.Regexp
}
func NewLLMBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *LLMBackendService {
return &LLMBackendService{
bcl: bcl,
ml: ml,
appConfig: appConfig,
ftMutex: sync.Mutex{},
cutstrings: make(map[string]*regexp.Regexp),
}
}
// TODO: Should ctx param be removed and replaced with hardcoded req.Context?
func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest, bc *config.BackendConfig, enableTokenChannel bool) (
resultChannel <-chan concurrency.ErrorOr[*LLMResponse], tokenChannel <-chan concurrency.ErrorOr[*LLMResponse], err error) {
threads := bc.Threads
if (threads == nil || *threads == 0) && llmbs.appConfig.Threads != 0 {
threads = &llmbs.appConfig.Threads
}
grpcOpts := gRPCModelOpts(bc)
var inferenceModel grpc.Backend
var err error
opts := modelOpts(c, o, []model.Option{
opts := modelOpts(bc, llmbs.appConfig, []model.Option{
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModel(modelFile),
model.WithContext(o.Context),
model.WithAssetDir(llmbs.appConfig.AssetsDestination),
model.WithModel(bc.Model),
model.WithContext(llmbs.appConfig.Context),
})
if c.Backend != "" {
opts = append(opts, model.WithBackendString(c.Backend))
if bc.Backend != "" {
opts = append(opts, model.WithBackendString(bc.Backend))
}
// Check if the modelFile exists, if it doesn't try to load it from the gallery
if o.AutoloadGalleries { // experimental
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
// Check if bc.Model exists, if it doesn't try to load it from the gallery
if llmbs.appConfig.AutoloadGalleries { // experimental
if _, err := os.Stat(bc.Model); os.IsNotExist(err) {
utils.ResetDownloadTimers()
// if we failed to load the model, we try to download it
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
err := gallery.InstallModelFromGalleryByName(llmbs.appConfig.Galleries, bc.Model, llmbs.appConfig.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
if err != nil {
return nil, err
return nil, nil, err
}
}
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
if bc.Backend == "" {
log.Debug().Msgf("backend not known for %q, falling back to greedy loader to find it", bc.Model)
inferenceModel, err = llmbs.ml.GreedyLoader(opts...)
} else {
inferenceModel, err = loader.BackendLoader(opts...)
inferenceModel, err = llmbs.ml.BackendLoader(opts...)
}
if err != nil {
return nil, err
log.Error().Err(err).Msg("[llmbs.Inference] failed to load a backend")
return
}
var protoMessages []*proto.Message
// if we are using the tokenizer template, we need to convert the messages to proto messages
// unless the prompt has already been tokenized (non-chat endpoints + functions)
if c.TemplateConfig.UseTokenizerTemplate && s == "" {
protoMessages = make([]*proto.Message, len(messages), len(messages))
for i, message := range messages {
grpcPredOpts := gRPCPredictOpts(bc, llmbs.appConfig.ModelPath)
grpcPredOpts.Prompt = req.Text
grpcPredOpts.Images = req.Images
if bc.TemplateConfig.UseTokenizerTemplate && req.Text == "" {
grpcPredOpts.UseTokenizerTemplate = true
protoMessages := make([]*proto.Message, len(req.RawMessages), len(req.RawMessages))
for i, message := range req.RawMessages {
protoMessages[i] = &proto.Message{
Role: message.Role,
}
@ -87,47 +129,32 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
case string:
protoMessages[i].Content = ct
default:
return nil, fmt.Errorf("Unsupported type for schema.Message.Content for inference: %T", ct)
err = fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
return
}
}
}
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (LLMResponse, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
opts.Messages = protoMessages
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
opts.Images = images
tokenUsage := TokenUsage{}
// check the per-model feature flag for usage, since tokenCallback may have a cost.
// Defaults to off as for now it is still experimental
if c.FeatureFlag.Enabled("usage") {
userTokenCallback := tokenCallback
if userTokenCallback == nil {
userTokenCallback = func(token string, usage TokenUsage) bool {
return true
}
}
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
promptInfo, pErr := inferenceModel.TokenizeString(ctx, grpcPredOpts)
if pErr == nil && promptInfo.Length > 0 {
tokenUsage.Prompt = int(promptInfo.Length)
}
tokenCallback = func(token string, usage TokenUsage) bool {
tokenUsage.Completion++
return userTokenCallback(token, tokenUsage)
}
}
rawResultChannel := make(chan concurrency.ErrorOr[*LLMResponse])
// TODO this next line is the biggest argument for taking named return values _back_ out!!!
var rawTokenChannel chan concurrency.ErrorOr[*LLMResponse]
if tokenCallback != nil {
if enableTokenChannel {
rawTokenChannel = make(chan concurrency.ErrorOr[*LLMResponse])
// TODO Needs better name
ss := ""
go func() {
var partialRune []byte
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
err := inferenceModel.PredictStream(ctx, grpcPredOpts, func(chars []byte) {
partialRune = append(partialRune, chars...)
for len(partialRune) > 0 {
@ -137,54 +164,126 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
break
}
tokenCallback(string(r), tokenUsage)
tokenUsage.Completion++
rawTokenChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
Response: string(r),
Usage: tokenUsage,
}}
ss += string(r)
partialRune = partialRune[size:]
}
})
return LLMResponse{
close(rawTokenChannel)
if err != nil {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
} else {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
Response: ss,
Usage: tokenUsage,
}, err
} else {
// TODO: Is the chicken bit the only way to get here? is that acceptable?
reply, err := inferenceModel.Predict(ctx, opts)
if err != nil {
return LLMResponse{}, err
}}
}
close(rawResultChannel)
}()
} else {
go func() {
reply, err := inferenceModel.Predict(ctx, grpcPredOpts)
if tokenUsage.Prompt == 0 {
tokenUsage.Prompt = int(reply.PromptTokens)
}
if tokenUsage.Completion == 0 {
tokenUsage.Completion = int(reply.Tokens)
}
return LLMResponse{
if err != nil {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
close(rawResultChannel)
} else {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
Response: string(reply.Message),
Usage: tokenUsage,
}, err
}}
close(rawResultChannel)
}
}()
}
return fn, nil
resultChannel = rawResultChannel
tokenChannel = rawTokenChannel
return
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
// TODO: Should predInput be a seperate param still, or should this fn handle extracting it from request??
func (llmbs *LLMBackendService) GenerateText(predInput string, request *schema.OpenAIRequest, bc *config.BackendConfig,
mappingFn func(*LLMResponse) schema.Choice, enableCompletionChannels bool, enableTokenChannels bool) (
// Returns:
resultChannel <-chan concurrency.ErrorOr[*LLMResponseBundle], completionChannels []<-chan concurrency.ErrorOr[*LLMResponse], tokenChannels []<-chan concurrency.ErrorOr[*LLMResponse], err error) {
func Finetune(config config.BackendConfig, input, prediction string) string {
rawChannel := make(chan concurrency.ErrorOr[*LLMResponseBundle])
resultChannel = rawChannel
if request.N == 0 { // number of completions to return
request.N = 1
}
images := []string{}
for _, m := range request.Messages {
images = append(images, m.StringImages...)
}
for i := 0; i < request.N; i++ {
individualResultChannel, tokenChannel, infErr := llmbs.Inference(request.Context, &LLMRequest{
Text: predInput,
Images: images,
RawMessages: request.Messages,
}, bc, enableTokenChannels)
if infErr != nil {
err = infErr // Avoids complaints about redeclaring err but looks dumb
return
}
completionChannels = append(completionChannels, individualResultChannel)
tokenChannels = append(tokenChannels, tokenChannel)
}
go func() {
initialBundle := LLMResponseBundle{
Request: request,
Response: []schema.Choice{},
Usage: TokenUsage{},
}
wg := concurrency.SliceOfChannelsReducer(completionChannels, rawChannel, func(iv concurrency.ErrorOr[*LLMResponse], ov concurrency.ErrorOr[*LLMResponseBundle]) concurrency.ErrorOr[*LLMResponseBundle] {
if iv.Error != nil {
ov.Error = iv.Error
// TODO: Decide if we should wipe partials or not?
return ov
}
ov.Value.Usage.Prompt += iv.Value.Usage.Prompt
ov.Value.Usage.Completion += iv.Value.Usage.Completion
ov.Value.Response = append(ov.Value.Response, mappingFn(iv.Value))
return ov
}, concurrency.ErrorOr[*LLMResponseBundle]{Value: &initialBundle}, true)
wg.Wait()
}()
return
}
func (llmbs *LLMBackendService) Finetune(config config.BackendConfig, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
llmbs.ftMutex.Lock()
reg, ok := llmbs.cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
llmbs.cutstrings[c] = regexp.MustCompile(c)
reg = llmbs.cutstrings[c]
}
mu.Unlock()
llmbs.ftMutex.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}

View File

@ -10,7 +10,7 @@ import (
model "github.com/go-skynet/LocalAI/pkg/model"
)
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
if so.SingleBackend {
opts = append(opts, model.WithSingleActiveBackend())
}
@ -19,12 +19,12 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
opts = append(opts, model.EnableParallelRequests)
}
if c.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
if bc.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(bc.GRPC.Attempts))
}
if c.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
if bc.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(bc.GRPC.AttemptsSleepTime))
}
for k, v := range so.ExternalGRPCBackends {
@ -34,7 +34,7 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
return opts
}
func getSeed(c config.BackendConfig) int32 {
func getSeed(c *config.BackendConfig) int32 {
seed := int32(*c.Seed)
if seed == config.RAND_SEED {
seed = rand.Int31()
@ -43,7 +43,7 @@ func getSeed(c config.BackendConfig) int32 {
return seed
}
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
@ -104,47 +104,47 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
}
}
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
func gRPCPredictOpts(bc *config.BackendConfig, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
if bc.PromptCachePath != "" {
p := filepath.Join(modelPath, bc.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
promptCachePath = p
}
return &pb.PredictOptions{
Temperature: float32(*c.Temperature),
TopP: float32(*c.TopP),
NDraft: c.NDraft,
TopK: int32(*c.TopK),
Tokens: int32(*c.Maxtokens),
Threads: int32(*c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
Temperature: float32(*bc.Temperature),
TopP: float32(*bc.TopP),
NDraft: bc.NDraft,
TopK: int32(*bc.TopK),
Tokens: int32(*bc.Maxtokens),
Threads: int32(*bc.Threads),
PromptCacheAll: bc.PromptCacheAll,
PromptCacheRO: bc.PromptCacheRO,
PromptCachePath: promptCachePath,
F16KV: *c.F16,
DebugMode: *c.Debug,
Grammar: c.Grammar,
NegativePromptScale: c.NegativePromptScale,
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NegativePrompt: c.NegativePrompt,
Mirostat: int32(*c.LLMConfig.Mirostat),
MirostatETA: float32(*c.LLMConfig.MirostatETA),
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
Debug: *c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: getSeed(c),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: *c.MMlock,
MMap: *c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(*c.TFZ),
TypicalP: float32(*c.TypicalP),
F16KV: *bc.F16,
DebugMode: *bc.Debug,
Grammar: bc.Grammar,
NegativePromptScale: bc.NegativePromptScale,
RopeFreqBase: bc.RopeFreqBase,
RopeFreqScale: bc.RopeFreqScale,
NegativePrompt: bc.NegativePrompt,
Mirostat: int32(*bc.LLMConfig.Mirostat),
MirostatETA: float32(*bc.LLMConfig.MirostatETA),
MirostatTAU: float32(*bc.LLMConfig.MirostatTAU),
Debug: *bc.Debug,
StopPrompts: bc.StopWords,
Repeat: int32(bc.RepeatPenalty),
NKeep: int32(bc.Keep),
Batch: int32(bc.Batch),
IgnoreEOS: bc.IgnoreEOS,
Seed: getSeed(bc),
FrequencyPenalty: float32(bc.FrequencyPenalty),
MLock: *bc.MMlock,
MMap: *bc.MMap,
MainGPU: bc.MainGPU,
TensorSplit: bc.TensorSplit,
TailFreeSamplingZ: float32(*bc.TFZ),
TypicalP: float32(*bc.TypicalP),
}
}

View File

@ -7,11 +7,48 @@ import (
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
)
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.Result, error) {
type TranscriptionBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
}
func NewTranscriptionBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TranscriptionBackendService {
return &TranscriptionBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func (tbs *TranscriptionBackendService) Transcribe(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.TranscriptionResult] {
responseChannel := make(chan concurrency.ErrorOr[*schema.TranscriptionResult])
go func(request *schema.OpenAIRequest) {
bc, request, err := tbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, tbs.appConfig)
if err != nil {
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: fmt.Errorf("failed reading parameters from request:%w", err)}
close(responseChannel)
return
}
tr, err := modelTranscription(request.File, request.Language, tbs.ml, bc, tbs.appConfig)
if err != nil {
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: err}
close(responseChannel)
return
}
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Value: tr}
close(responseChannel)
}(request)
return responseChannel
}
func modelTranscription(audio, language string, ml *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(model.WhisperBackend),

View File

@ -7,29 +7,60 @@ import (
"path/filepath"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
type TextToSpeechBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
func NewTextToSpeechBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TextToSpeechBackendService {
return &TextToSpeechBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
func (ttsbs *TextToSpeechBackendService) TextToAudioFile(request *schema.TTSRequest) <-chan concurrency.ErrorOr[*string] {
responseChannel := make(chan concurrency.ErrorOr[*string])
go func(request *schema.TTSRequest) {
cfg, err := ttsbs.bcl.LoadBackendConfigFileByName(request.Model, ttsbs.appConfig.ModelPath,
config.LoadOptionDebug(ttsbs.appConfig.Debug),
config.LoadOptionThreads(ttsbs.appConfig.Threads),
config.LoadOptionContextSize(ttsbs.appConfig.ContextSize),
config.LoadOptionF16(ttsbs.appConfig.F16),
)
if err != nil {
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
close(responseChannel)
return
}
if request.Backend != "" {
cfg.Backend = request.Backend
}
outFile, _, err := modelTTS(cfg.Backend, request.Input, cfg.Model, request.Voice, ttsbs.ml, ttsbs.appConfig, cfg)
if err != nil {
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
close(responseChannel)
return
}
responseChannel <- concurrency.ErrorOr[*string]{Value: &outFile}
close(responseChannel)
}(request)
return responseChannel
}
func modelTTS(backend, text, modelFile string, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig *config.BackendConfig) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
@ -37,7 +68,7 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
grpcOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
opts := modelOpts(&config.BackendConfig{}, appConfig, []model.Option{
model.WithBackendString(bb),
model.WithModel(modelFile),
model.WithContext(appConfig.Context),
@ -87,3 +118,19 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
return filePath, res, err
}
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
}
}

View File

@ -124,11 +124,11 @@ func (r *RunCMD) Run(ctx *Context) error {
}
if r.PreloadBackendOnly {
_, _, _, err := startup.Startup(opts...)
_, err := startup.Startup(opts...)
return err
}
cl, ml, options, err := startup.Startup(opts...)
application, err := startup.Startup(opts...)
if err != nil {
return fmt.Errorf("failed basic startup tasks with error %s", err.Error())
@ -137,7 +137,7 @@ func (r *RunCMD) Run(ctx *Context) error {
// Watch the configuration directory
// If the directory does not exist, we don't watch it
if _, err := os.Stat(r.LocalaiConfigDir); err == nil {
closeConfigWatcherFn, err := startup.WatchConfigDirectory(r.LocalaiConfigDir, options)
closeConfigWatcherFn, err := startup.WatchConfigDirectory(r.LocalaiConfigDir, application.ApplicationConfig)
defer closeConfigWatcherFn()
if err != nil {
@ -145,7 +145,7 @@ func (r *RunCMD) Run(ctx *Context) error {
}
}
appHTTP, err := http.App(cl, ml, options)
appHTTP, err := http.App(application)
if err != nil {
log.Error().Err(err).Msg("error during HTTP App construction")
return err

View File

@ -7,6 +7,7 @@ import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/model"
)
@ -43,11 +44,21 @@ func (t *TranscriptCMD) Run(ctx *Context) error {
defer ml.StopAllGRPC()
tr, err := backend.ModelTranscription(t.Filename, t.Language, ml, c, opts)
if err != nil {
return err
tbs := backend.NewTranscriptionBackendService(ml, cl, opts)
resultChannel := tbs.Transcribe(&schema.OpenAIRequest{
PredictionOptions: schema.PredictionOptions{
Language: t.Language,
},
File: t.Filename,
})
r := <-resultChannel
if r.Error != nil {
return r.Error
}
for _, segment := range tr.Segments {
for _, segment := range r.Value.Segments {
fmt.Println(segment.Start.String(), "-", segment.Text)
}
return nil

View File

@ -9,6 +9,7 @@ import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/model"
)
@ -42,20 +43,29 @@ func (t *TTSCMD) Run(ctx *Context) error {
defer ml.StopAllGRPC()
options := config.BackendConfig{}
options.SetDefaults()
ttsbs := backend.NewTextToSpeechBackendService(ml, config.NewBackendConfigLoader(), opts)
filePath, _, err := backend.ModelTTS(t.Backend, text, t.Model, t.Voice, ml, opts, options)
if err != nil {
return err
request := &schema.TTSRequest{
Model: t.Model,
Input: text,
Backend: t.Backend,
Voice: t.Voice,
}
resultsChannel := ttsbs.TextToAudioFile(request)
rawResult := <-resultsChannel
if rawResult.Error != nil {
return rawResult.Error
}
if outputFile != "" {
if err := os.Rename(filePath, outputFile); err != nil {
if err := os.Rename(*rawResult.Value, outputFile); err != nil {
return err
}
fmt.Printf("Generate file %s\n", outputFile)
fmt.Printf("Generated file %q\n", outputFile)
} else {
fmt.Printf("Generate file %s\n", filePath)
fmt.Printf("Generated file %q\n", *rawResult.Value)
}
return nil
}

View File

@ -1,22 +1,7 @@
package config
import (
"errors"
"fmt"
"io/fs"
"os"
"path/filepath"
"sort"
"strings"
"sync"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
"github.com/charmbracelet/glamour"
)
const (
@ -199,7 +184,7 @@ func (c *BackendConfig) FunctionToCall() string {
}
func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
lo := &LoadOptions{}
lo := &ConfigLoaderOptions{}
lo.Apply(opts...)
ctx := lo.ctxSize
@ -312,287 +297,3 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
cfg.Debug = &trueV
}
}
////// Config Loader ////////
type BackendConfigLoader struct {
configs map[string]BackendConfig
sync.Mutex
}
type LoadOptions struct {
debug bool
threads, ctxSize int
f16 bool
}
func LoadOptionDebug(debug bool) ConfigLoaderOption {
return func(o *LoadOptions) {
o.debug = debug
}
}
func LoadOptionThreads(threads int) ConfigLoaderOption {
return func(o *LoadOptions) {
o.threads = threads
}
}
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
return func(o *LoadOptions) {
o.ctxSize = ctxSize
}
}
func LoadOptionF16(f16 bool) ConfigLoaderOption {
return func(o *LoadOptions) {
o.f16 = f16
}
}
type ConfigLoaderOption func(*LoadOptions)
func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
for _, l := range options {
l(lo)
}
}
// Load a config file for a model
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
// Load a config file if present after the model name
cfg := &BackendConfig{
PredictionOptions: schema.PredictionOptions{
Model: modelName,
},
}
cfgExisting, exists := cl.GetBackendConfig(modelName)
if exists {
cfg = &cfgExisting
} else {
// Try loading a model config file
modelConfig := filepath.Join(modelPath, modelName+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := cl.LoadBackendConfig(
modelConfig, opts...,
); err != nil {
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = cl.GetBackendConfig(modelName)
if exists {
cfg = &cfgExisting
}
}
}
cfg.SetDefaults(opts...)
return cfg, nil
}
func NewBackendConfigLoader() *BackendConfigLoader {
return &BackendConfigLoader{
configs: make(map[string]BackendConfig),
}
}
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
c := &[]*BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
for _, cc := range *c {
cc.SetDefaults(opts...)
}
return *c, nil
}
func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
lo := &LoadOptions{}
lo.Apply(opts...)
c := &BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
c.SetDefaults(opts...)
return c, nil
}
func (cm *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadBackendConfigFile(file, opts...)
if err != nil {
return fmt.Errorf("cannot load config file: %w", err)
}
for _, cc := range c {
cm.configs[cc.Name] = *cc
}
return nil
}
func (cl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
cl.Lock()
defer cl.Unlock()
c, err := ReadBackendConfig(file, opts...)
if err != nil {
return fmt.Errorf("cannot read config file: %w", err)
}
cl.configs[c.Name] = *c
return nil
}
func (cl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
cl.Lock()
defer cl.Unlock()
v, exists := cl.configs[m]
return v, exists
}
func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
cl.Lock()
defer cl.Unlock()
var res []BackendConfig
for _, v := range cl.configs {
res = append(res, v)
}
sort.SliceStable(res, func(i, j int) bool {
return res[i].Name < res[j].Name
})
return res
}
func (cl *BackendConfigLoader) ListBackendConfigs() []string {
cl.Lock()
defer cl.Unlock()
var res []string
for k := range cl.configs {
res = append(res, k)
}
return res
}
// Preload prepare models if they are not local but url or huggingface repositories
func (cl *BackendConfigLoader) Preload(modelPath string) error {
cl.Lock()
defer cl.Unlock()
status := func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
}
log.Info().Msgf("Preloading models from %s", modelPath)
renderMode := "dark"
if os.Getenv("COLOR") != "" {
renderMode = os.Getenv("COLOR")
}
glamText := func(t string) {
out, err := glamour.Render(t, renderMode)
if err == nil && os.Getenv("NO_COLOR") == "" {
fmt.Println(out)
} else {
fmt.Println(t)
}
}
for i, config := range cl.configs {
// Download files and verify their SHA
for _, file := range config.DownloadFiles {
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
return err
}
// Create file path
filePath := filepath.Join(modelPath, file.Filename)
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
return err
}
}
modelURL := config.PredictionOptions.Model
modelURL = downloader.ConvertURL(modelURL)
if downloader.LooksLikeURL(modelURL) {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
if err != nil {
return err
}
}
cc := cl.configs[i]
c := &cc
c.PredictionOptions.Model = md5Name
cl.configs[i] = *c
}
if cl.configs[i].Name != "" {
glamText(fmt.Sprintf("**Model name**: _%s_", cl.configs[i].Name))
}
if cl.configs[i].Description != "" {
//glamText("**Description**")
glamText(cl.configs[i].Description)
}
if cl.configs[i].Usage != "" {
//glamText("**Usage**")
glamText(cl.configs[i].Usage)
}
}
return nil
}
// LoadBackendConfigsFromPath reads all the configurations of the models from a path
// (non-recursive)
func (cm *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
cm.Lock()
defer cm.Unlock()
entries, err := os.ReadDir(path)
if err != nil {
return err
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
info, err := entry.Info()
if err != nil {
return err
}
files = append(files, info)
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
continue
}
c, err := ReadBackendConfig(filepath.Join(path, file.Name()), opts...)
if err == nil {
cm.configs[c.Name] = *c
}
}
return nil
}

View File

@ -0,0 +1,509 @@
package config
import (
"encoding/json"
"errors"
"fmt"
"io/fs"
"os"
"path/filepath"
"sort"
"strings"
"sync"
"github.com/charmbracelet/glamour"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/grammar"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v2"
)
type BackendConfigLoader struct {
configs map[string]BackendConfig
sync.Mutex
}
type ConfigLoaderOptions struct {
debug bool
threads, ctxSize int
f16 bool
}
func LoadOptionDebug(debug bool) ConfigLoaderOption {
return func(o *ConfigLoaderOptions) {
o.debug = debug
}
}
func LoadOptionThreads(threads int) ConfigLoaderOption {
return func(o *ConfigLoaderOptions) {
o.threads = threads
}
}
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
return func(o *ConfigLoaderOptions) {
o.ctxSize = ctxSize
}
}
func LoadOptionF16(f16 bool) ConfigLoaderOption {
return func(o *ConfigLoaderOptions) {
o.f16 = f16
}
}
type ConfigLoaderOption func(*ConfigLoaderOptions)
func (lo *ConfigLoaderOptions) Apply(options ...ConfigLoaderOption) {
for _, l := range options {
l(lo)
}
}
func NewBackendConfigLoader() *BackendConfigLoader {
return &BackendConfigLoader{
configs: make(map[string]BackendConfig),
}
}
func (bcl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
bcl.Lock()
defer bcl.Unlock()
c, err := readBackendConfig(file, opts...)
if err != nil {
return fmt.Errorf("cannot read config file: %w", err)
}
bcl.configs[c.Name] = *c
return nil
}
func (bcl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
bcl.Lock()
defer bcl.Unlock()
v, exists := bcl.configs[m]
return v, exists
}
func (bcl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
bcl.Lock()
defer bcl.Unlock()
var res []BackendConfig
for _, v := range bcl.configs {
res = append(res, v)
}
sort.SliceStable(res, func(i, j int) bool {
return res[i].Name < res[j].Name
})
return res
}
func (bcl *BackendConfigLoader) ListBackendConfigs() []string {
bcl.Lock()
defer bcl.Unlock()
var res []string
for k := range bcl.configs {
res = append(res, k)
}
return res
}
// Preload prepare models if they are not local but url or huggingface repositories
func (bcl *BackendConfigLoader) Preload(modelPath string) error {
bcl.Lock()
defer bcl.Unlock()
status := func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
}
log.Info().Msgf("Preloading models from %s", modelPath)
renderMode := "dark"
if os.Getenv("COLOR") != "" {
renderMode = os.Getenv("COLOR")
}
glamText := func(t string) {
out, err := glamour.Render(t, renderMode)
if err == nil && os.Getenv("NO_COLOR") == "" {
fmt.Println(out)
} else {
fmt.Println(t)
}
}
for i, config := range bcl.configs {
// Download files and verify their SHA
for _, file := range config.DownloadFiles {
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
return err
}
// Create file path
filePath := filepath.Join(modelPath, file.Filename)
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
return err
}
}
modelURL := config.PredictionOptions.Model
modelURL = downloader.ConvertURL(modelURL)
if downloader.LooksLikeURL(modelURL) {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
if err != nil {
return err
}
}
cc := bcl.configs[i]
c := &cc
c.PredictionOptions.Model = md5Name
bcl.configs[i] = *c
}
if bcl.configs[i].Name != "" {
glamText(fmt.Sprintf("**Model name**: _%s_", bcl.configs[i].Name))
}
if bcl.configs[i].Description != "" {
//glamText("**Description**")
glamText(bcl.configs[i].Description)
}
if bcl.configs[i].Usage != "" {
//glamText("**Usage**")
glamText(bcl.configs[i].Usage)
}
}
return nil
}
func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
bcl.Lock()
defer bcl.Unlock()
entries, err := os.ReadDir(path)
if err != nil {
return err
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
info, err := entry.Info()
if err != nil {
return err
}
files = append(files, info)
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
continue
}
c, err := readBackendConfig(filepath.Join(path, file.Name()), opts...)
if err == nil {
bcl.configs[c.Name] = *c
}
}
return nil
}
func (bcl *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
bcl.Lock()
defer bcl.Unlock()
c, err := readBackendConfigFile(file, opts...)
if err != nil {
return fmt.Errorf("cannot load config file: %w", err)
}
for _, cc := range c {
bcl.configs[cc.Name] = *cc
}
return nil
}
//////////
// Load a config file for a model
func (bcl *BackendConfigLoader) LoadBackendConfigFileByName(modelName string, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
// Load a config file if present after the model name
cfg := &BackendConfig{
PredictionOptions: schema.PredictionOptions{
Model: modelName,
},
}
cfgExisting, exists := bcl.GetBackendConfig(modelName)
if exists {
cfg = &cfgExisting
} else {
// Load a config file if present after the model name
modelConfig := filepath.Join(modelPath, modelName+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := bcl.LoadBackendConfig(modelConfig); err != nil {
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = bcl.GetBackendConfig(modelName)
if exists {
cfg = &cfgExisting
}
}
}
cfg.SetDefaults(opts...)
return cfg, nil
}
func readBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
c := &[]*BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
for _, cc := range *c {
cc.SetDefaults(opts...)
}
return *c, nil
}
func readBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
c := &BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
c.SetDefaults(opts...)
return c, nil
}
func (bcl *BackendConfigLoader) LoadBackendConfigForModelAndOpenAIRequest(modelFile string, input *schema.OpenAIRequest, appConfig *ApplicationConfig) (*BackendConfig, *schema.OpenAIRequest, error) {
cfg, err := bcl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
LoadOptionContextSize(appConfig.ContextSize),
LoadOptionDebug(appConfig.Debug),
LoadOptionF16(appConfig.F16),
LoadOptionThreads(appConfig.Threads),
)
// Set the parameters for the language model prediction
updateBackendConfigFromOpenAIRequest(cfg, input)
return cfg, input, err
}
func updateBackendConfigFromOpenAIRequest(bc *BackendConfig, request *schema.OpenAIRequest) {
if request.Echo {
bc.Echo = request.Echo
}
if request.TopK != nil && *request.TopK != 0 {
bc.TopK = request.TopK
}
if request.TopP != nil && *request.TopP != 0 {
bc.TopP = request.TopP
}
if request.Backend != "" {
bc.Backend = request.Backend
}
if request.ClipSkip != 0 {
bc.Diffusers.ClipSkip = request.ClipSkip
}
if request.ModelBaseName != "" {
bc.AutoGPTQ.ModelBaseName = request.ModelBaseName
}
if request.NegativePromptScale != 0 {
bc.NegativePromptScale = request.NegativePromptScale
}
if request.UseFastTokenizer {
bc.UseFastTokenizer = request.UseFastTokenizer
}
if request.NegativePrompt != "" {
bc.NegativePrompt = request.NegativePrompt
}
if request.RopeFreqBase != 0 {
bc.RopeFreqBase = request.RopeFreqBase
}
if request.RopeFreqScale != 0 {
bc.RopeFreqScale = request.RopeFreqScale
}
if request.Grammar != "" {
bc.Grammar = request.Grammar
}
if request.Temperature != nil && *request.Temperature != 0 {
bc.Temperature = request.Temperature
}
if request.Maxtokens != nil && *request.Maxtokens != 0 {
bc.Maxtokens = request.Maxtokens
}
switch stop := request.Stop.(type) {
case string:
if stop != "" {
bc.StopWords = append(bc.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
bc.StopWords = append(bc.StopWords, s)
}
}
}
if len(request.Tools) > 0 {
for _, tool := range request.Tools {
request.Functions = append(request.Functions, tool.Function)
}
}
if request.ToolsChoice != nil {
var toolChoice grammar.Tool
switch content := request.ToolsChoice.(type) {
case string:
_ = json.Unmarshal([]byte(content), &toolChoice)
case map[string]interface{}:
dat, _ := json.Marshal(content)
_ = json.Unmarshal(dat, &toolChoice)
}
request.FunctionCall = map[string]interface{}{
"name": toolChoice.Function.Name,
}
}
// Decode each request's message content
index := 0
for i, m := range request.Messages {
switch content := m.Content.(type) {
case string:
request.Messages[i].StringContent = content
case []interface{}:
dat, _ := json.Marshal(content)
c := []schema.Content{}
json.Unmarshal(dat, &c)
for _, pp := range c {
if pp.Type == "text" {
request.Messages[i].StringContent = pp.Text
} else if pp.Type == "image_url" {
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
base64, err := utils.GetImageURLAsBase64(pp.ImageURL.URL)
if err == nil {
request.Messages[i].StringImages = append(request.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
// set a placeholder for each image
request.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + request.Messages[i].StringContent
index++
} else {
fmt.Print("Failed encoding image", err)
}
}
}
}
}
if request.RepeatPenalty != 0 {
bc.RepeatPenalty = request.RepeatPenalty
}
if request.FrequencyPenalty != 0 {
bc.FrequencyPenalty = request.FrequencyPenalty
}
if request.PresencePenalty != 0 {
bc.PresencePenalty = request.PresencePenalty
}
if request.Keep != 0 {
bc.Keep = request.Keep
}
if request.Batch != 0 {
bc.Batch = request.Batch
}
if request.IgnoreEOS {
bc.IgnoreEOS = request.IgnoreEOS
}
if request.Seed != nil {
bc.Seed = request.Seed
}
if request.TypicalP != nil {
bc.TypicalP = request.TypicalP
}
switch inputs := request.Input.(type) {
case string:
if inputs != "" {
bc.InputStrings = append(bc.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
bc.InputStrings = append(bc.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
bc.InputToken = append(bc.InputToken, tokens)
}
}
}
// Can be either a string or an object
switch fnc := request.FunctionCall.(type) {
case string:
if fnc != "" {
bc.SetFunctionCallString(fnc)
}
case map[string]interface{}:
var name string
n, exists := fnc["name"]
if exists {
nn, e := n.(string)
if e {
name = nn
}
}
bc.SetFunctionCallNameString(name)
}
switch p := request.Prompt.(type) {
case string:
bc.PromptStrings = append(bc.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
bc.PromptStrings = append(bc.PromptStrings, s)
}
}
}
}

View File

@ -0,0 +1,6 @@
package config
// This file re-exports private functions to be used directly in unit tests.
// Since this file's name ends in _test.go, theoretically these should not be exposed past the tests.
var ReadBackendConfigFile = readBackendConfigFile

View File

@ -1,23 +1,20 @@
package http
import (
"encoding/json"
"errors"
"os"
"strings"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/go-skynet/LocalAI/core"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/gofiber/swagger" // swagger handler
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/pkg/model"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
@ -55,13 +52,12 @@ func readAuthHeader(c *fiber.Ctx) string {
// @securityDefinitions.apikey BearerAuth
// @in header
// @name Authorization
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
func App(application *core.Application) (*fiber.App, error) {
// Return errors as JSON responses
app := fiber.New(fiber.Config{
Views: renderEngine(),
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: appConfig.DisableMessage,
BodyLimit: application.ApplicationConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: application.ApplicationConfig.DisableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
// Status code defaults to 500
@ -82,7 +78,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
},
})
if appConfig.Debug {
if application.ApplicationConfig.Debug {
app.Use(logger.New(logger.Config{
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
}))
@ -90,7 +86,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
// Default middleware config
if !appConfig.Debug {
if !application.ApplicationConfig.Debug {
app.Use(recover.New())
}
@ -108,25 +104,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
auth := func(c *fiber.Ctx) error {
if len(appConfig.ApiKeys) == 0 {
return c.Next()
}
// Check for api_keys.json file
fileContent, err := os.ReadFile("api_keys.json")
if err == nil {
// Parse JSON content from the file
var fileKeys []string
err := json.Unmarshal(fileContent, &fileKeys)
if err != nil {
return c.Status(fiber.StatusInternalServerError).JSON(fiber.Map{"message": "Error parsing api_keys.json"})
}
// Add file keys to options.ApiKeys
appConfig.ApiKeys = append(appConfig.ApiKeys, fileKeys...)
}
if len(appConfig.ApiKeys) == 0 {
if len(application.ApplicationConfig.ApiKeys) == 0 {
return c.Next()
}
@ -142,7 +120,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
}
apiKey := authHeaderParts[1]
for _, key := range appConfig.ApiKeys {
for _, key := range application.ApplicationConfig.ApiKeys {
if apiKey == key {
return c.Next()
}
@ -151,20 +129,22 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
}
if appConfig.CORS {
if application.ApplicationConfig.CORS {
var c func(ctx *fiber.Ctx) error
if appConfig.CORSAllowOrigins == "" {
if application.ApplicationConfig.CORSAllowOrigins == "" {
c = cors.New()
} else {
c = cors.New(cors.Config{AllowOrigins: appConfig.CORSAllowOrigins})
c = cors.New(cors.Config{AllowOrigins: application.ApplicationConfig.CORSAllowOrigins})
}
app.Use(c)
}
fiberContextExtractor := fiberContext.NewFiberContextExtractor(application.ModelLoader, application.ApplicationConfig)
// LocalAI API endpoints
galleryService := services.NewGalleryService(appConfig.ModelPath)
galleryService.Start(appConfig.Context, cl)
galleryService := services.NewGalleryService(application.ApplicationConfig.ModelPath)
galleryService.Start(application.ApplicationConfig.Context, application.BackendConfigLoader)
app.Get("/version", auth, func(c *fiber.Ctx) error {
return c.JSON(struct {
@ -172,29 +152,17 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
}{Version: internal.PrintableVersion()})
})
// Make sure directories exists
os.MkdirAll(appConfig.ImageDir, 0755)
os.MkdirAll(appConfig.AudioDir, 0755)
os.MkdirAll(appConfig.UploadDir, 0755)
os.MkdirAll(appConfig.ConfigsDir, 0755)
os.MkdirAll(appConfig.ModelPath, 0755)
// Load config jsons
utils.LoadConfig(appConfig.UploadDir, openai.UploadedFilesFile, &openai.UploadedFiles)
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsConfigFile, &openai.Assistants)
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsFileConfigFile, &openai.AssistantFiles)
app.Get("/swagger/*", swagger.HandlerDefault) // default
welcomeRoute(
app,
cl,
ml,
appConfig,
application.BackendConfigLoader,
application.ModelLoader,
application.ApplicationConfig,
auth,
)
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(application.ApplicationConfig.Galleries, application.ApplicationConfig.ModelPath, galleryService)
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
@ -203,83 +171,85 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
// Elevenlabs
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
// Stores
sl := model.NewModelLoader("")
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
storeLoader := model.NewModelLoader("") // TODO: Investigate if this should be migrated to application and reused. Should the path be configurable? Merging for now.
app.Post("/stores/set", auth, localai.StoresSetEndpoint(storeLoader, application.ApplicationConfig))
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(storeLoader, application.ApplicationConfig))
app.Post("/stores/get", auth, localai.StoresGetEndpoint(storeLoader, application.ApplicationConfig))
app.Post("/stores/find", auth, localai.StoresFindEndpoint(storeLoader, application.ApplicationConfig))
// openAI compatible API endpoint
// openAI compatible API endpoints
// chat
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
app.Post("/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
// edit
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
app.Post("/v1/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
app.Post("/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
// assistant
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
// TODO: Refactor this to the new style eventually
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
// files
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Post("/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Get("/v1/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Get("/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
// completion
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/v1/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
app.Post("/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
// embeddings
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
// audio
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(fiberContextExtractor, application.TranscriptionBackendService))
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
// images
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(fiberContextExtractor, application.ImageGenerationBackendService))
if appConfig.ImageDir != "" {
app.Static("/generated-images", appConfig.ImageDir)
// Elevenlabs
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
// LocalAI TTS?
app.Post("/tts", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
if application.ApplicationConfig.ImageDir != "" {
app.Static("/generated-images", application.ApplicationConfig.ImageDir)
}
if appConfig.AudioDir != "" {
app.Static("/generated-audio", appConfig.AudioDir)
if application.ApplicationConfig.AudioDir != "" {
app.Static("/generated-audio", application.ApplicationConfig.AudioDir)
}
ok := func(c *fiber.Ctx) error {
@ -291,13 +261,12 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
app.Get("/readyz", ok)
// Experimental Backend Statistics Module
backendMonitor := services.NewBackendMonitor(cl, ml, appConfig) // Split out for now
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(backendMonitor))
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(backendMonitor))
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(application.BackendMonitorService))
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(application.BackendMonitorService))
// models
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/v1/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
app.Get("/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())

View File

@ -12,7 +12,9 @@ import (
"os"
"path/filepath"
"runtime"
"strings"
"github.com/go-skynet/LocalAI/core"
"github.com/go-skynet/LocalAI/core/config"
. "github.com/go-skynet/LocalAI/core/http"
"github.com/go-skynet/LocalAI/core/schema"
@ -205,9 +207,7 @@ var _ = Describe("API test", func() {
var cancel context.CancelFunc
var tmpdir string
var modelDir string
var bcl *config.BackendConfigLoader
var ml *model.ModelLoader
var applicationConfig *config.ApplicationConfig
var application *core.Application
commonOpts := []config.AppOption{
config.WithDebug(true),
@ -252,7 +252,7 @@ var _ = Describe("API test", func() {
},
}
bcl, ml, applicationConfig, err = startup.Startup(
application, err = startup.Startup(
append(commonOpts,
config.WithContext(c),
config.WithGalleries(galleries),
@ -261,7 +261,7 @@ var _ = Describe("API test", func() {
config.WithBackendAssetsOutput(backendAssetsDir))...)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
app, err = App(application)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
@ -474,11 +474,11 @@ var _ = Describe("API test", func() {
})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp2.Choices)).To(Equal(1))
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
Expect(resp2.Choices[0].Message.ToolCalls[0].Function).ToNot(BeNil())
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
var res map[string]string
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
Expect(err).ToNot(HaveOccurred())
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
@ -487,9 +487,9 @@ var _ = Describe("API test", func() {
})
It("runs openllama gguf(llama-cpp)", Label("llama-gguf"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
// if runtime.GOOS != "linux" {
// Skip("test supported only on linux")
// }
modelName := "codellama"
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
URL: "github:go-skynet/model-gallery/codellama-7b-instruct.yaml",
@ -504,7 +504,7 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
}, "480s", "10s").Should(Equal(true))
By("testing chat")
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: modelName, Messages: []openai.ChatCompletionMessage{
@ -551,11 +551,13 @@ var _ = Describe("API test", func() {
})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp2.Choices)).To(Equal(1))
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
fmt.Printf("\n--- %+v\n\n", resp2.Choices[0].Message)
Expect(resp2.Choices[0].Message.ToolCalls).ToNot(BeNil())
Expect(resp2.Choices[0].Message.ToolCalls[0]).ToNot(BeNil())
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
var res map[string]string
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
Expect(err).ToNot(HaveOccurred())
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
@ -609,7 +611,7 @@ var _ = Describe("API test", func() {
},
}
bcl, ml, applicationConfig, err = startup.Startup(
application, err = startup.Startup(
append(commonOpts,
config.WithContext(c),
config.WithAudioDir(tmpdir),
@ -620,7 +622,7 @@ var _ = Describe("API test", func() {
config.WithBackendAssetsOutput(tmpdir))...,
)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
app, err = App(application)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
@ -724,14 +726,14 @@ var _ = Describe("API test", func() {
var err error
bcl, ml, applicationConfig, err = startup.Startup(
application, err = startup.Startup(
append(commonOpts,
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
config.WithContext(c),
config.WithModelPath(modelPath),
)...)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
app, err = App(application)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
@ -761,6 +763,11 @@ var _ = Describe("API test", func() {
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
})
It("can generate completions via ggml", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
@ -768,6 +775,11 @@ var _ = Describe("API test", func() {
})
It("can generate chat completions via ggml", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
@ -775,6 +787,11 @@ var _ = Describe("API test", func() {
})
It("can generate completions from model configs", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: testPrompt})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
@ -782,6 +799,11 @@ var _ = Describe("API test", func() {
})
It("can generate chat completions from model configs", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
@ -868,9 +890,9 @@ var _ = Describe("API test", func() {
Context("backends", func() {
It("runs rwkv completion", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
// if runtime.GOOS != "linux" {
// Skip("test supported only on linux")
// }
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices) > 0).To(BeTrue())
@ -891,17 +913,20 @@ var _ = Describe("API test", func() {
}
Expect(err).ToNot(HaveOccurred())
if len(response.Choices) > 0 {
text += response.Choices[0].Text
tokens++
}
}
Expect(text).ToNot(BeEmpty())
Expect(text).To(ContainSubstring("five"))
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
})
It("runs rwkv chat completion", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
// if runtime.GOOS != "linux" {
// Skip("test supported only on linux")
// }
resp, err := client.CreateChatCompletion(context.TODO(),
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
Expect(err).ToNot(HaveOccurred())
@ -1010,14 +1035,14 @@ var _ = Describe("API test", func() {
c, cancel = context.WithCancel(context.Background())
var err error
bcl, ml, applicationConfig, err = startup.Startup(
application, err = startup.Startup(
append(commonOpts,
config.WithContext(c),
config.WithModelPath(modelPath),
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
app, err = App(application)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
@ -1041,18 +1066,33 @@ var _ = Describe("API test", func() {
}
})
It("can generate chat completions from config file (list1)", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
})
It("can generate chat completions from config file (list2)", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
})
It("can generate edit completions from config file", func() {
bt, ok := os.LookupEnv("BUILD_TYPE")
if ok && strings.ToLower(bt) == "metal" {
Skip("GGML + Metal is known flaky, skip test temporarily")
}
request := openaigo.EditCreateRequestBody{
Model: "list2",
Instruction: "foo",

View File

@ -1,43 +1,88 @@
package fiberContext
import (
"context"
"encoding/json"
"fmt"
"strings"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
type FiberContextExtractor struct {
ml *model.ModelLoader
appConfig *config.ApplicationConfig
}
func NewFiberContextExtractor(ml *model.ModelLoader, appConfig *config.ApplicationConfig) *FiberContextExtractor {
return &FiberContextExtractor{
ml: ml,
appConfig: appConfig,
}
}
// ModelFromContext returns the model from the context
// If no model is specified, it will take the first available
// Takes a model string as input which should be the one received from the user request.
// It returns the model name resolved from the context and an error if any.
func ModelFromContext(ctx *fiber.Ctx, loader *model.ModelLoader, modelInput string, firstModel bool) (string, error) {
if ctx.Params("model") != "" {
modelInput = ctx.Params("model")
func (fce *FiberContextExtractor) ModelFromContext(ctx *fiber.Ctx, modelInput string, firstModel bool) (string, error) {
ctxPM := ctx.Params("model")
if ctxPM != "" {
log.Debug().Msgf("[FCE] Overriding param modelInput %q with ctx.Params value %q", modelInput, ctxPM)
modelInput = ctxPM
}
// Set model from bearer token, if available
bearer := strings.TrimLeft(ctx.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
bearer := strings.TrimPrefix(ctx.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && fce.ml.ExistsInModelPath(bearer)
// If no model was specified, take the first available
if modelInput == "" && !bearerExists && firstModel {
models, _ := loader.ListModels()
models, _ := fce.ml.ListModels()
if len(models) > 0 {
modelInput = models[0]
log.Debug().Msgf("No model specified, using: %s", modelInput)
log.Debug().Msgf("[FCE] No model specified, using first available: %s", modelInput)
} else {
log.Debug().Msgf("No model specified, returning error")
return "", fmt.Errorf("no model specified")
log.Warn().Msgf("[FCE] No model specified, none available")
return "", fmt.Errorf("[fce] no model specified, none available")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
log.Debug().Msgf("[FCE] Using model from bearer token: %s", bearer)
modelInput = bearer
}
if modelInput == "" {
log.Warn().Msg("[FCE] modelInput is empty")
}
return modelInput, nil
}
// TODO: Do we still need the first return value?
func (fce *FiberContextExtractor) OpenAIRequestFromContext(c *fiber.Ctx, firstModel bool) (string, *schema.OpenAIRequest, error) {
input := new(schema.OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
}
received, _ := json.Marshal(input)
ctx, cancel := context.WithCancel(fce.appConfig.Context)
input.Context = ctx
input.Cancel = cancel
log.Debug().Msgf("Request received: %s", string(received))
var err error
input.Model, err = fce.ModelFromContext(c, input.Model, firstModel)
return input.Model, input, err
}

View File

@ -2,9 +2,7 @@ package elevenlabs
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/gofiber/fiber/v2"
@ -17,7 +15,7 @@ import (
// @Param request body schema.TTSRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/text-to-speech/{voice-id} [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.ElevenLabsTTSRequest)
@ -28,34 +26,21 @@ func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfi
return err
}
modelFile, err := fiberContext.ModelFromContext(c, ml, input.ModelID, false)
var err error
input.ModelID, err = fce.ModelFromContext(c, input.ModelID, false)
if err != nil {
modelFile = input.ModelID
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
}
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
config.LoadOptionDebug(appConfig.Debug),
config.LoadOptionThreads(appConfig.Threads),
config.LoadOptionContextSize(appConfig.ContextSize),
config.LoadOptionF16(appConfig.F16),
)
if err != nil {
modelFile = input.ModelID
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
} else {
if input.ModelID != "" {
modelFile = input.ModelID
} else {
modelFile = cfg.Model
}
}
log.Debug().Msgf("Request for model: %s", modelFile)
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Text, modelFile, voiceID, ml, appConfig, *cfg)
if err != nil {
return err
}
return c.Download(filePath)
responseChannel := ttsbs.TextToAudioFile(&schema.TTSRequest{
Model: input.ModelID,
Voice: voiceID,
Input: input.Text,
})
rawValue := <-responseChannel
if rawValue.Error != nil {
return rawValue.Error
}
return c.Download(*rawValue.Value)
}
}

View File

@ -6,7 +6,7 @@ import (
"github.com/gofiber/fiber/v2"
)
func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
func BackendMonitorEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.BackendMonitorRequest)
@ -23,7 +23,7 @@ func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error
}
}
func BackendShutdownEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
func BackendShutdownEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.BackendMonitorRequest)
// Get input data from the request body

View File

@ -2,9 +2,7 @@ package localai
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/gofiber/fiber/v2"
@ -16,45 +14,26 @@ import (
// @Param request body schema.TTSRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/audio/speech [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
var err error
input := new(schema.TTSRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
if err = c.BodyParser(input); err != nil {
return err
}
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
input.Model, err = fce.ModelFromContext(c, input.Model, false)
if err != nil {
modelFile = input.Model
log.Warn().Msgf("Model not found in context: %s", input.Model)
}
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
config.LoadOptionDebug(appConfig.Debug),
config.LoadOptionThreads(appConfig.Threads),
config.LoadOptionContextSize(appConfig.ContextSize),
config.LoadOptionF16(appConfig.F16),
)
if err != nil {
modelFile = input.Model
log.Warn().Msgf("Model not found in context: %s", input.Model)
} else {
modelFile = cfg.Model
responseChannel := ttsbs.TextToAudioFile(input)
rawValue := <-responseChannel
if rawValue.Error != nil {
return rawValue.Error
}
log.Debug().Msgf("Request for model: %s", modelFile)
if input.Backend != "" {
cfg.Backend = input.Backend
}
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, input.Voice, ml, appConfig, *cfg)
if err != nil {
return err
}
return c.Download(filePath)
return c.Download(*rawValue.Value)
}
}

View File

@ -339,7 +339,7 @@ func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.Model
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find "))
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistantID %q", assistantID))
}
}

View File

@ -5,17 +5,11 @@ import (
"bytes"
"encoding/json"
"fmt"
"strings"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/go-skynet/LocalAI/core/services"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
@ -25,412 +19,82 @@ import (
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/chat/completions [post]
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
emptyMessage := ""
id := uuid.New().String()
created := int(time.Now().Unix())
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
}
responses <- resp
return true
})
close(responses)
}
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
result := ""
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
result += s
// TODO: Change generated BNF grammar to be compliant with the schema so we can
// stream the result token by token here.
return true
})
results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls)
noActionToRun := len(results) > 0 && results[0].name == noAction
switch {
case noActionToRun:
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt)
if err != nil {
log.Error().Err(err).Msg("error handling question")
return
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
responses <- resp
default:
for i, ss := range results {
name, args := ss.name, ss.arguments
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
Delta: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
},
},
},
}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
responses <- schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
Delta: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Arguments: args,
},
},
},
}}},
Object: "chat.completion.chunk",
}
}
}
close(responses)
}
func ChatEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
processFunctions := false
funcs := grammar.Functions{}
modelFile, input, err := readRequest(c, ml, startupOptions, true)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request: %w", err)
}
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
traceID, finalResultChannel, _, tokenChannel, err := oais.Chat(request, false, request.Stream)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Configuration read: %+v", config)
// Allow the user to set custom actions via config file
// to be "embedded" in each model
noActionName := "answer"
noActionDescription := "use this action to answer without performing any action"
if config.FunctionsConfig.NoActionFunctionName != "" {
noActionName = config.FunctionsConfig.NoActionFunctionName
}
if config.FunctionsConfig.NoActionDescriptionName != "" {
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
return err
}
if input.ResponseFormat.Type == "json_object" {
input.Grammar = grammar.JSONBNF
}
if request.Stream {
config.Grammar = input.Grammar
log.Debug().Msgf("Chat Stream request received")
// process functions if we have any defined or if we have a function call string
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
log.Debug().Msgf("Response needs to process functions")
processFunctions = true
noActionGrammar := grammar.Function{
Name: noActionName,
Description: noActionDescription,
Parameters: map[string]interface{}{
"properties": map[string]interface{}{
"message": map[string]interface{}{
"type": "string",
"description": "The message to reply the user with",
}},
},
}
// Append the no action function
funcs = append(funcs, input.Functions...)
if !config.FunctionsConfig.DisableNoAction {
funcs = append(funcs, noActionGrammar)
}
// Force picking one of the functions by the request
if config.FunctionToCall() != "" {
funcs = funcs.Select(config.FunctionToCall())
}
// Update input grammar
jsStruct := funcs.ToJSONStructure()
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
} else if input.JSONFunctionGrammarObject != nil {
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
}
// functions are not supported in stream mode (yet?)
toStream := input.Stream
log.Debug().Msgf("Parameters: %+v", config)
var predInput string
// If we are using the tokenizer template, we don't need to process the messages
// unless we are processing functions
if !config.TemplateConfig.UseTokenizerTemplate || processFunctions {
suppressConfigSystemPrompt := false
mess := []string{}
for messageIndex, i := range input.Messages {
var content string
role := i.Role
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
roleFn := "assistant_function_call"
r := config.Roles[roleFn]
if r != "" {
role = roleFn
}
}
r := config.Roles[role]
contentExists := i.Content != nil && i.StringContent != ""
fcall := i.FunctionCall
if len(i.ToolCalls) > 0 {
fcall = i.ToolCalls
}
// First attempt to populate content via a chat message specific template
if config.TemplateConfig.ChatMessage != "" {
chatMessageData := model.ChatMessageTemplateData{
SystemPrompt: config.SystemPrompt,
Role: r,
RoleName: role,
Content: i.StringContent,
FunctionCall: fcall,
FunctionName: i.Name,
LastMessage: messageIndex == (len(input.Messages) - 1),
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
MessageIndex: messageIndex,
}
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
if err != nil {
log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
} else {
if templatedChatMessage == "" {
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
}
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
content = templatedChatMessage
}
}
marshalAnyRole := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
}
marshalAny := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
}
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
if content == "" {
if r != "" {
if contentExists {
content = fmt.Sprint(r, i.StringContent)
}
if i.FunctionCall != nil {
marshalAnyRole(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAnyRole(i.ToolCalls)
}
} else {
if contentExists {
content = fmt.Sprint(i.StringContent)
}
if i.FunctionCall != nil {
marshalAny(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAny(i.ToolCalls)
}
}
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
if contentExists && role == "system" {
suppressConfigSystemPrompt = true
}
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
log.Debug().Msgf("Prompt (before templating): %s", predInput)
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Chat != "" && !processFunctions {
templateFile = config.TemplateConfig.Chat
}
if config.TemplateConfig.Functions != "" && processFunctions {
templateFile = config.TemplateConfig.Functions
}
if templateFile != "" {
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
}
}
log.Debug().Msgf("Prompt (after templating): %s", predInput)
if processFunctions {
log.Debug().Msgf("Grammar: %+v", config.Grammar)
}
}
switch {
case toStream:
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
// c.Set("Content-Type", "text/event-stream")
//
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
responses := make(chan schema.OpenAIResponse)
if !processFunctions {
go process(predInput, input, config, ml, responses)
} else {
go processTools(noActionName, predInput, input, config, ml, responses)
}
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
usage := &schema.OpenAIUsage{}
toolsCalled := false
for ev := range responses {
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
for ev := range tokenChannel {
if ev.Error != nil {
log.Debug().Err(ev.Error).Msg("chat streaming responseChannel error")
request.Cancel()
break
}
usage = &ev.Value.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
if len(ev.Value.Choices[0].Delta.ToolCalls) > 0 {
toolsCalled = true
}
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
if ev.Error != nil {
log.Debug().Err(ev.Error).Msg("[ChatEndpoint] error to debug during tokenChannel handler")
enc.Encode(ev.Error)
} else {
enc.Encode(ev.Value)
}
log.Debug().Msgf("chat streaming sending chunk: %s", buf.String())
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
if err != nil {
log.Debug().Msgf("Sending chunk failed: %v", err)
input.Cancel()
log.Debug().Err(err).Msgf("Sending chunk failed")
request.Cancel()
break
}
err = w.Flush()
if err != nil {
log.Debug().Msg("error while flushing, closing connection")
request.Cancel()
break
}
w.Flush()
}
finishReason := "stop"
if toolsCalled {
finishReason = "tool_calls"
} else if toolsCalled && len(input.Tools) == 0 {
} else if toolsCalled && len(request.Tools) == 0 {
finishReason = "function_call"
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
FinishReason: finishReason,
Index: 0,
Delta: &schema.Message{Content: &emptyMessage},
Delta: &schema.Message{Content: ""},
}},
Object: "chat.completion.chunk",
Usage: *usage,
@ -441,202 +105,21 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
// no streaming mode
default:
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
if !processFunctions {
// no function is called, just reply and use stop as finish reason
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
return
}
results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls)
noActionsToRun := len(results) > 0 && results[0].name == noActionName
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
rawResponse := <-finalResultChannel
switch {
case noActionsToRun:
result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput)
if err != nil {
log.Error().Err(err).Msg("error handling question")
return
}
*c = append(*c, schema.Choice{
Message: &schema.Message{Role: "assistant", Content: &result}})
default:
toolChoice := schema.Choice{
Message: &schema.Message{
Role: "assistant",
},
if rawResponse.Error != nil {
return rawResponse.Error
}
if len(input.Tools) > 0 {
toolChoice.FinishReason = "tool_calls"
}
for _, ss := range results {
name, args := ss.name, ss.arguments
if len(input.Tools) > 0 {
// If we are using tools, we condense the function calls into
// a single response choice with all the tools
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
schema.ToolCall{
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
Arguments: args,
},
},
)
} else {
// otherwise we return more choices directly
*c = append(*c, schema.Choice{
FinishReason: "function_call",
Message: &schema.Message{
Role: "assistant",
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
},
})
}
}
if len(input.Tools) > 0 {
// we need to append our result if we are using tools
*c = append(*c, toolChoice)
}
}
}, nil)
if err != nil {
return err
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Str("jsonResult", string(jsonResult)).Msg("Chat Final Response")
// Return the prediction in the response body
return c.JSON(resp)
}
return c.JSON(rawResponse.Value)
}
}
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, args, prompt string) (string, error) {
log.Debug().Msgf("nothing to do, computing a reply")
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(args), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = backend.Finetune(*config, prompt, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
return message, nil
}
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU/GPU) another computation
config.Grammar = ""
images := []string{}
for _, m := range input.Messages {
images = append(images, m.StringImages...)
}
predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, ml, *config, o, nil)
if err != nil {
log.Error().Err(err).Msg("model inference failed")
return "", err
}
prediction, err := predFunc()
if err != nil {
log.Error().Err(err).Msg("prediction failed")
return "", err
}
return backend.Finetune(*config, prompt, prediction.Response), nil
}
type funcCallResults struct {
name string
arguments string
}
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
results := []funcCallResults{}
// TODO: use generics to avoid this code duplication
if multipleResults {
ss := []map[string]interface{}{}
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
for _, s := range ss {
func_name, ok := s["function"]
if !ok {
continue
}
args, ok := s["arguments"]
if !ok {
continue
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
continue
}
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
}
} else {
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name, ok := ss["function"]
if !ok {
return results
}
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
if !ok {
return results
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
return results
}
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
}
return results
}

View File

@ -4,18 +4,13 @@ import (
"bufio"
"bytes"
"encoding/json"
"errors"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
@ -25,116 +20,50 @@ import (
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/completions [post]
func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
id := uuid.New().String()
created := int(time.Now().Unix())
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
Index: 0,
Text: s,
},
},
Object: "text_completion",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
}
log.Debug().Msgf("Sending goroutine: %s", s)
responses <- resp
return true
})
close(responses)
}
func CompletionEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
modelFile, input, err := readRequest(c, ml, appConfig, true)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("`input`: %+v", input)
log.Debug().Msgf("`OpenAIRequest`: %+v", request)
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
traceID, finalResultChannel, _, _, tokenChannel, err := oais.Completion(request, false, request.Stream)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
return err
}
if input.ResponseFormat.Type == "json_object" {
input.Grammar = grammar.JSONBNF
}
if request.Stream {
log.Debug().Msgf("Completion Stream request received")
config.Grammar = input.Grammar
log.Debug().Msgf("Parameter Config: %+v", config)
if input.Stream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
//c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
}
if input.Stream {
if len(config.PromptStrings) > 1 {
return errors.New("cannot handle more than 1 `PromptStrings` when Streaming")
}
predInput := config.PromptStrings[0]
if templateFile != "" {
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
Input: predInput,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
}
responses := make(chan schema.OpenAIResponse)
go process(predInput, input, config, ml, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
for ev := range tokenChannel {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
if ev.Error != nil {
log.Debug().Msgf("[CompletionEndpoint] error to debug during tokenChannel handler: %q", ev.Error)
enc.Encode(ev.Error)
} else {
enc.Encode(ev.Value)
}
log.Debug().Msgf("Sending chunk: %s", buf.String())
log.Debug().Msgf("completion streaming sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
Index: 0,
@ -151,55 +80,15 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
}))
return nil
}
var result []schema.Choice
totalTokenUsage := backend.TokenUsage{}
for k, i := range config.PromptStrings {
if templateFile != "" {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
Input: i,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
rawResponse := <-finalResultChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
}
r, tokenUsage, err := ComputeChoices(
input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
*c = append(*c, schema.Choice{Text: s, FinishReason: "stop", Index: k})
}, nil)
if err != nil {
return err
}
totalTokenUsage.Prompt += tokenUsage.Prompt
totalTokenUsage.Completion += tokenUsage.Completion
result = append(result, r...)
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "text_completion",
Usage: schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
},
}
jsonResult, _ := json.Marshal(resp)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View File

@ -3,92 +3,36 @@ package openai
import (
"encoding/json"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
)
func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func EditEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
modelFile, input, err := readRequest(c, ml, appConfig, true)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Edit != "" {
templateFile = config.TemplateConfig.Edit
}
var result []schema.Choice
totalTokenUsage := backend.TokenUsage{}
for _, i := range config.InputStrings {
if templateFile != "" {
templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
}
r, tokenUsage, err := ComputeChoices(input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
*c = append(*c, schema.Choice{Text: s})
}, nil)
_, finalResultChannel, _, _, _, err := oais.Edit(request, false, request.Stream)
if err != nil {
return err
}
totalTokenUsage.Prompt += tokenUsage.Prompt
totalTokenUsage.Completion += tokenUsage.Completion
result = append(result, r...)
rawResponse := <-finalResultChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "edit",
Usage: schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
},
}
jsonResult, _ := json.Marshal(resp)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View File

@ -3,14 +3,9 @@ package openai
import (
"encoding/json"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@ -21,63 +16,25 @@ import (
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/embeddings [post]
func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func EmbeddingsEndpoint(fce *fiberContext.FiberContextExtractor, ebs *backend.EmbeddingsBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readRequest(c, ml, appConfig, true)
_, input, err := fce.OpenAIRequestFromContext(c, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(model, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
responseChannel := ebs.Embeddings(input)
rawResponse := <-responseChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
log.Debug().Msgf("Parameter Config: %+v", config)
items := []schema.Item{}
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding("", s, ml, *config, appConfig)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding(s, []int{}, ml, *config, appConfig)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
jsonResult, _ := json.Marshal(resp)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View File

@ -1,50 +1,18 @@
package openai
import (
"bufio"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strconv"
"strings"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/backend"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func downloadFile(url string) (string, error) {
// Get the data
resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()
// Create the file
out, err := os.CreateTemp("", "image")
if err != nil {
return "", err
}
defer out.Close()
// Write the body to file
_, err = io.Copy(out, resp.Body)
return out.Name(), err
}
//
// https://platform.openai.com/docs/api-reference/images/create
/*
*
@ -59,186 +27,36 @@ func downloadFile(url string) (string, error) {
*
*/
// ImageEndpoint is the OpenAI Image generation API endpoint https://platform.openai.com/docs/api-reference/images/create
// @Summary Creates an image given a prompt.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/images/generations [post]
func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func ImageEndpoint(fce *fiberContext.FiberContextExtractor, igbs *backend.ImageGenerationBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readRequest(c, ml, appConfig, false)
// TODO: Somewhat a hack. Is there a better place to assign this?
if igbs.BaseUrlForGeneratedImages == "" {
igbs.BaseUrlForGeneratedImages = c.BaseURL() + "/generated-images/"
}
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
if m == "" {
m = model.StableDiffusionBackend
}
log.Debug().Msgf("Loading model: %+v", m)
responseChannel := igbs.GenerateImage(request)
rawResponse := <-responseChannel
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, 0, 0, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
if rawResponse.Error != nil {
return rawResponse.Error
}
src := ""
if input.File != "" {
fileData := []byte{}
// check if input.File is an URL, if so download it and save it
// to a temporary file
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
out, err := downloadFile(input.File)
if err != nil {
return fmt.Errorf("failed downloading file:%w", err)
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
return fmt.Errorf("failed reading file:%w", err)
}
} else {
// base 64 decode the file and write it somewhere
// that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(input.File)
jsonResult, err := json.Marshal(rawResponse.Value)
if err != nil {
return err
}
}
// Create a temporary file
outputFile, err := os.CreateTemp(appConfig.ImageDir, "b64")
if err != nil {
return err
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
return err
}
outputFile.Close()
src = outputFile.Name()
defer os.RemoveAll(src)
}
log.Debug().Msgf("Parameter Config: %+v", config)
switch config.Backend {
case "stablediffusion":
config.Backend = model.StableDiffusionBackend
case "tinydream":
config.Backend = model.TinyDreamBackend
case "":
config.Backend = model.StableDiffusionBackend
}
sizeParts := strings.Split(input.Size, "x")
if len(sizeParts) != 2 {
return fmt.Errorf("invalid value for 'size'")
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
return fmt.Errorf("invalid value for 'size'")
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
return fmt.Errorf("invalid value for 'size'")
}
b64JSON := false
if input.ResponseFormat.Type == "b64_json" {
b64JSON = true
}
// src and clip_skip
var result []schema.Item
for _, i := range config.PromptStrings {
n := input.N
if input.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
}
mode := 0
step := config.Step
if step == 0 {
step = 15
}
if input.Mode != 0 {
mode = input.Mode
}
if input.Step != 0 {
step = input.Step
}
tempDir := ""
if !b64JSON {
tempDir = appConfig.ImageDir
}
// Create a temporary file
outputFile, err := os.CreateTemp(tempDir, "b64")
if err != nil {
return err
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
return err
}
baseURL := c.BaseURL()
fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, src, output, ml, *config, appConfig)
if err != nil {
return err
}
if err := fn(); err != nil {
return err
}
item := &schema.Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
return err
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = baseURL + "/generated-images/" + base
}
result = append(result, *item)
}
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Data: result,
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View File

@ -1,55 +0,0 @@
package openai
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ComputeChoices(
req *schema.OpenAIRequest,
predInput string,
config *config.BackendConfig,
o *config.ApplicationConfig,
loader *model.ModelLoader,
cb func(string, *[]schema.Choice),
tokenCallback func(string, backend.TokenUsage) bool) ([]schema.Choice, backend.TokenUsage, error) {
n := req.N // number of completions to return
result := []schema.Choice{}
if n == 0 {
n = 1
}
images := []string{}
for _, m := range req.Messages {
images = append(images, m.StringImages...)
}
// get the model function to call for the result
predFunc, err := backend.ModelInference(req.Context, predInput, req.Messages, images, loader, *config, o, tokenCallback)
if err != nil {
return result, backend.TokenUsage{}, err
}
tokenUsage := backend.TokenUsage{}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, backend.TokenUsage{}, err
}
tokenUsage.Prompt += prediction.Usage.Prompt
tokenUsage.Completion += prediction.Usage.Completion
finetunedResponse := backend.Finetune(*config, predInput, prediction.Response)
cb(finetunedResponse, &result)
//result = append(result, Choice{Text: prediction})
}
return result, tokenUsage, err
}

View File

@ -1,61 +1,21 @@
package openai
import (
"regexp"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/services"
"github.com/gofiber/fiber/v2"
)
func ListModelsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader) func(ctx *fiber.Ctx) error {
func ListModelsEndpoint(lms *services.ListModelsService) func(ctx *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
models, err := ml.ListModels()
if err != nil {
return err
}
var mm map[string]interface{} = map[string]interface{}{}
dataModels := []schema.OpenAIModel{}
var filterFn func(name string) bool
// If blank, no filter is applied.
filter := c.Query("filter")
// If filter is not specified, do not filter the list by model name
if filter == "" {
filterFn = func(_ string) bool { return true }
} else {
// If filter _IS_ specified, we compile it to a regex which is used to create the filterFn
rxp, err := regexp.Compile(filter)
if err != nil {
return err
}
filterFn = func(name string) bool {
return rxp.MatchString(name)
}
}
// By default, exclude any loose files that are already referenced by a configuration file.
excludeConfigured := c.QueryBool("excludeConfigured", true)
// Start with the known configurations
for _, c := range cl.GetAllBackendConfigs() {
if excludeConfigured {
mm[c.Model] = nil
}
if filterFn(c.Name) {
dataModels = append(dataModels, schema.OpenAIModel{ID: c.Name, Object: "model"})
}
}
// Then iterate through the loose files:
for _, m := range models {
// And only adds them if they shouldn't be skipped.
if _, exists := mm[m]; !exists && filterFn(m) {
dataModels = append(dataModels, schema.OpenAIModel{ID: m, Object: "model"})
}
dataModels, err := lms.ListModels(filter, excludeConfigured)
if err != nil {
return err
}
return c.JSON(struct {

View File

@ -1,285 +0,0 @@
package openai
import (
"context"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func readRequest(c *fiber.Ctx, ml *model.ModelLoader, o *config.ApplicationConfig, firstModel bool) (string, *schema.OpenAIRequest, error) {
input := new(schema.OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
}
received, _ := json.Marshal(input)
ctx, cancel := context.WithCancel(o.Context)
input.Context = ctx
input.Cancel = cancel
log.Debug().Msgf("Request received: %s", string(received))
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, firstModel)
return modelFile, input, err
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
// encodes it in base64 and returns the base64 string
func getBase64Image(s string) (string, error) {
if strings.HasPrefix(s, "http") {
// download the image
resp, err := http.Get(s)
if err != nil {
return "", err
}
defer resp.Body.Close()
// read the image data into memory
data, err := io.ReadAll(resp.Body)
if err != nil {
return "", err
}
// encode the image data in base64
encoded := base64.StdEncoding.EncodeToString(data)
// return the base64 string
return encoded, nil
}
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
}
return "", fmt.Errorf("not valid string")
}
func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != nil {
config.TopK = input.TopK
}
if input.TopP != nil {
config.TopP = input.TopP
}
if input.Backend != "" {
config.Backend = input.Backend
}
if input.ClipSkip != 0 {
config.Diffusers.ClipSkip = input.ClipSkip
}
if input.ModelBaseName != "" {
config.AutoGPTQ.ModelBaseName = input.ModelBaseName
}
if input.NegativePromptScale != 0 {
config.NegativePromptScale = input.NegativePromptScale
}
if input.UseFastTokenizer {
config.UseFastTokenizer = input.UseFastTokenizer
}
if input.NegativePrompt != "" {
config.NegativePrompt = input.NegativePrompt
}
if input.RopeFreqBase != 0 {
config.RopeFreqBase = input.RopeFreqBase
}
if input.RopeFreqScale != 0 {
config.RopeFreqScale = input.RopeFreqScale
}
if input.Grammar != "" {
config.Grammar = input.Grammar
}
if input.Temperature != nil {
config.Temperature = input.Temperature
}
if input.Maxtokens != nil {
config.Maxtokens = input.Maxtokens
}
switch stop := input.Stop.(type) {
case string:
if stop != "" {
config.StopWords = append(config.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
config.StopWords = append(config.StopWords, s)
}
}
}
if len(input.Tools) > 0 {
for _, tool := range input.Tools {
input.Functions = append(input.Functions, tool.Function)
}
}
if input.ToolsChoice != nil {
var toolChoice grammar.Tool
switch content := input.ToolsChoice.(type) {
case string:
_ = json.Unmarshal([]byte(content), &toolChoice)
case map[string]interface{}:
dat, _ := json.Marshal(content)
_ = json.Unmarshal(dat, &toolChoice)
}
input.FunctionCall = map[string]interface{}{
"name": toolChoice.Function.Name,
}
}
// Decode each request's message content
index := 0
for i, m := range input.Messages {
switch content := m.Content.(type) {
case string:
input.Messages[i].StringContent = content
case []interface{}:
dat, _ := json.Marshal(content)
c := []schema.Content{}
json.Unmarshal(dat, &c)
for _, pp := range c {
if pp.Type == "text" {
input.Messages[i].StringContent = pp.Text
} else if pp.Type == "image_url" {
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
base64, err := getBase64Image(pp.ImageURL.URL)
if err == nil {
input.Messages[i].StringImages = append(input.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
// set a placeholder for each image
input.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + input.Messages[i].StringContent
index++
} else {
fmt.Print("Failed encoding image", err)
}
}
}
}
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.FrequencyPenalty != 0 {
config.FrequencyPenalty = input.FrequencyPenalty
}
if input.PresencePenalty != 0 {
config.PresencePenalty = input.PresencePenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != nil {
config.Seed = input.Seed
}
if input.TypicalP != nil {
config.TypicalP = input.TypicalP
}
switch inputs := input.Input.(type) {
case string:
if inputs != "" {
config.InputStrings = append(config.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
config.InputStrings = append(config.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
config.InputToken = append(config.InputToken, tokens)
}
}
}
// Can be either a string or an object
switch fnc := input.FunctionCall.(type) {
case string:
if fnc != "" {
config.SetFunctionCallString(fnc)
}
case map[string]interface{}:
var name string
n, exists := fnc["name"]
if exists {
nn, e := n.(string)
if e {
name = nn
}
}
config.SetFunctionCallNameString(name)
}
switch p := input.Prompt.(type) {
case string:
config.PromptStrings = append(config.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
config.PromptStrings = append(config.PromptStrings, s)
}
}
}
}
func mergeRequestWithConfig(modelFile string, input *schema.OpenAIRequest, cm *config.BackendConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.BackendConfig, *schema.OpenAIRequest, error) {
cfg, err := cm.LoadBackendConfigFileByName(modelFile, loader.ModelPath,
config.LoadOptionDebug(debug),
config.LoadOptionThreads(threads),
config.LoadOptionContextSize(ctx),
config.LoadOptionF16(f16),
)
// Set the parameters for the language model prediction
updateRequestConfig(cfg, input)
return cfg, input, err
}

View File

@ -9,8 +9,7 @@ import (
"path/filepath"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
model "github.com/go-skynet/LocalAI/pkg/model"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@ -23,17 +22,15 @@ import (
// @Param file formData file true "file"
// @Success 200 {object} map[string]string "Response"
// @Router /v1/audio/transcriptions [post]
func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func TranscriptEndpoint(fce *fiberContext.FiberContextExtractor, tbs *backend.TranscriptionBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readRequest(c, ml, appConfig, false)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
// TODO: Investigate this file copy stuff later - potentially belongs in service.
// retrieve the file data from the request
file, err := c.FormFile("file")
if err != nil {
@ -65,13 +62,16 @@ func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
log.Debug().Msgf("Audio file copied to: %+v", dst)
tr, err := backend.ModelTranscription(dst, input.Language, ml, *config, appConfig)
if err != nil {
return err
}
request.File = dst
log.Debug().Msgf("Trascribed: %+v", tr)
responseChannel := tbs.Transcribe(request)
rawResponse := <-responseChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
log.Debug().Msgf("Transcribed: %+v", rawResponse.Value)
// TODO: handle different outputs here
return c.Status(http.StatusOK).JSON(tr)
return c.Status(http.StatusOK).JSON(rawResponse.Value)
}
}

View File

@ -10,7 +10,7 @@ type Segment struct {
Tokens []int `json:"tokens"`
}
type Result struct {
type TranscriptionResult struct {
Segments []Segment `json:"segments"`
Text string `json:"text"`
}

View File

@ -15,22 +15,22 @@ import (
gopsutil "github.com/shirou/gopsutil/v3/process"
)
type BackendMonitor struct {
type BackendMonitorService struct {
configLoader *config.BackendConfigLoader
modelLoader *model.ModelLoader
options *config.ApplicationConfig // Taking options in case we need to inspect ExternalGRPCBackends, though that's out of scope for now, hence the name.
}
func NewBackendMonitor(configLoader *config.BackendConfigLoader, modelLoader *model.ModelLoader, appConfig *config.ApplicationConfig) BackendMonitor {
return BackendMonitor{
func NewBackendMonitorService(modelLoader *model.ModelLoader, configLoader *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *BackendMonitorService {
return &BackendMonitorService{
configLoader: configLoader,
modelLoader: modelLoader,
options: appConfig,
}
}
func (bm BackendMonitor) getModelLoaderIDFromModelName(modelName string) (string, error) {
config, exists := bm.configLoader.GetBackendConfig(modelName)
func (bms BackendMonitorService) getModelLoaderIDFromModelName(modelName string) (string, error) {
config, exists := bms.configLoader.GetBackendConfig(modelName)
var backendId string
if exists {
backendId = config.Model
@ -46,8 +46,8 @@ func (bm BackendMonitor) getModelLoaderIDFromModelName(modelName string) (string
return backendId, nil
}
func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.BackendMonitorResponse, error) {
config, exists := bm.configLoader.GetBackendConfig(model)
func (bms *BackendMonitorService) SampleLocalBackendProcess(model string) (*schema.BackendMonitorResponse, error) {
config, exists := bms.configLoader.GetBackendConfig(model)
var backend string
if exists {
backend = config.Model
@ -60,7 +60,7 @@ func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.Backe
backend = fmt.Sprintf("%s.bin", backend)
}
pid, err := bm.modelLoader.GetGRPCPID(backend)
pid, err := bms.modelLoader.GetGRPCPID(backend)
if err != nil {
log.Error().Err(err).Str("model", model).Msg("failed to find GRPC pid")
@ -101,12 +101,12 @@ func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.Backe
}, nil
}
func (bm BackendMonitor) CheckAndSample(modelName string) (*proto.StatusResponse, error) {
backendId, err := bm.getModelLoaderIDFromModelName(modelName)
func (bms BackendMonitorService) CheckAndSample(modelName string) (*proto.StatusResponse, error) {
backendId, err := bms.getModelLoaderIDFromModelName(modelName)
if err != nil {
return nil, err
}
modelAddr := bm.modelLoader.CheckIsLoaded(backendId)
modelAddr := bms.modelLoader.CheckIsLoaded(backendId)
if modelAddr == "" {
return nil, fmt.Errorf("backend %s is not currently loaded", backendId)
}
@ -114,7 +114,7 @@ func (bm BackendMonitor) CheckAndSample(modelName string) (*proto.StatusResponse
status, rpcErr := modelAddr.GRPC(false, nil).Status(context.TODO())
if rpcErr != nil {
log.Warn().Msgf("backend %s experienced an error retrieving status info: %s", backendId, rpcErr.Error())
val, slbErr := bm.SampleLocalBackendProcess(backendId)
val, slbErr := bms.SampleLocalBackendProcess(backendId)
if slbErr != nil {
return nil, fmt.Errorf("backend %s experienced an error retrieving status info via rpc: %s, then failed local node process sample: %s", backendId, rpcErr.Error(), slbErr.Error())
}
@ -131,10 +131,10 @@ func (bm BackendMonitor) CheckAndSample(modelName string) (*proto.StatusResponse
return status, nil
}
func (bm BackendMonitor) ShutdownModel(modelName string) error {
backendId, err := bm.getModelLoaderIDFromModelName(modelName)
func (bms BackendMonitorService) ShutdownModel(modelName string) error {
backendId, err := bms.getModelLoaderIDFromModelName(modelName)
if err != nil {
return err
}
return bm.modelLoader.ShutdownModel(backendId)
return bms.modelLoader.ShutdownModel(backendId)
}

View File

@ -3,14 +3,18 @@ package services
import (
"context"
"encoding/json"
"errors"
"os"
"path/filepath"
"strings"
"sync"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/embedded"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/startup"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v2"
)
@ -29,18 +33,6 @@ func NewGalleryService(modelPath string) *GalleryService {
}
}
func prepareModel(modelPath string, req gallery.GalleryModel, cl *config.BackendConfigLoader, downloadStatus func(string, string, string, float64)) error {
config, err := gallery.GetGalleryConfigFromURL(req.URL)
if err != nil {
return err
}
config.Files = append(config.Files, req.AdditionalFiles...)
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
}
func (g *GalleryService) UpdateStatus(s string, op *gallery.GalleryOpStatus) {
g.Lock()
defer g.Unlock()
@ -92,10 +84,10 @@ func (g *GalleryService) Start(c context.Context, cl *config.BackendConfigLoader
err = gallery.InstallModelFromGalleryByName(op.Galleries, op.GalleryName, g.modelPath, op.Req, progressCallback)
}
} else if op.ConfigURL != "" {
startup.PreloadModelsConfigurations(op.ConfigURL, g.modelPath, op.ConfigURL)
PreloadModelsConfigurations(op.ConfigURL, g.modelPath, op.ConfigURL)
err = cl.Preload(g.modelPath)
} else {
err = prepareModel(g.modelPath, op.Req, cl, progressCallback)
err = prepareModel(g.modelPath, op.Req, progressCallback)
}
if err != nil {
@ -127,13 +119,12 @@ type galleryModel struct {
ID string `json:"id"`
}
func processRequests(modelPath, s string, cm *config.BackendConfigLoader, galleries []gallery.Gallery, requests []galleryModel) error {
func processRequests(modelPath string, galleries []gallery.Gallery, requests []galleryModel) error {
var err error
for _, r := range requests {
utils.ResetDownloadTimers()
if r.ID == "" {
err = prepareModel(modelPath, r.GalleryModel, cm, utils.DisplayDownloadFunction)
err = prepareModel(modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
} else {
if strings.Contains(r.ID, "@") {
err = gallery.InstallModelFromGallery(
@ -158,7 +149,7 @@ func ApplyGalleryFromFile(modelPath, s string, cl *config.BackendConfigLoader, g
return err
}
return processRequests(modelPath, s, cl, galleries, requests)
return processRequests(modelPath, galleries, requests)
}
func ApplyGalleryFromString(modelPath, s string, cl *config.BackendConfigLoader, galleries []gallery.Gallery) error {
@ -168,5 +159,90 @@ func ApplyGalleryFromString(modelPath, s string, cl *config.BackendConfigLoader,
return err
}
return processRequests(modelPath, s, cl, galleries, requests)
return processRequests(modelPath, galleries, requests)
}
// PreloadModelsConfigurations will preload models from the given list of URLs
// It will download the model if it is not already present in the model path
// It will also try to resolve if the model is an embedded model YAML configuration
func PreloadModelsConfigurations(modelLibraryURL string, modelPath string, models ...string) {
for _, url := range models {
// As a best effort, try to resolve the model from the remote library
// if it's not resolved we try with the other method below
if modelLibraryURL != "" {
lib, err := embedded.GetRemoteLibraryShorteners(modelLibraryURL)
if err == nil {
if lib[url] != "" {
log.Debug().Msgf("[startup] model configuration is defined remotely: %s (%s)", url, lib[url])
url = lib[url]
}
}
}
url = embedded.ModelShortURL(url)
switch {
case embedded.ExistsInModelsLibrary(url):
modelYAML, err := embedded.ResolveContent(url)
// If we resolve something, just save it to disk and continue
if err != nil {
log.Error().Err(err).Msg("error resolving model content")
continue
}
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
md5Name := utils.MD5(url)
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error writing model definition")
}
case downloader.LooksLikeURL(url):
log.Debug().Msgf("[startup] resolved model to download: %s", url)
// md5 of model name
md5Name := utils.MD5(url)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
err := downloader.DownloadFile(url, modelDefinitionFilePath, "", func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
})
if err != nil {
log.Error().Err(err).Str("url", url).Str("filepath", modelDefinitionFilePath).Msg("error downloading model")
}
}
default:
if _, err := os.Stat(url); err == nil {
log.Debug().Msgf("[startup] resolved local model: %s", url)
// copy to modelPath
md5Name := utils.MD5(url)
modelYAML, err := os.ReadFile(url)
if err != nil {
log.Error().Err(err).Str("filepath", url).Msg("error reading model definition")
continue
}
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error loading model: %s")
}
} else {
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
}
}
}
}
func prepareModel(modelPath string, req gallery.GalleryModel, downloadStatus func(string, string, string, float64)) error {
config, err := gallery.GetGalleryConfigFromURL(req.URL)
if err != nil {
return err
}
config.Files = append(config.Files, req.AdditionalFiles...)
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
}

View File

@ -0,0 +1,72 @@
package services
import (
"regexp"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/model"
)
type ListModelsService struct {
bcl *config.BackendConfigLoader
ml *model.ModelLoader
appConfig *config.ApplicationConfig
}
func NewListModelsService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ListModelsService {
return &ListModelsService{
bcl: bcl,
ml: ml,
appConfig: appConfig,
}
}
func (lms *ListModelsService) ListModels(filter string, excludeConfigured bool) ([]schema.OpenAIModel, error) {
models, err := lms.ml.ListModels()
if err != nil {
return nil, err
}
var mm map[string]interface{} = map[string]interface{}{}
dataModels := []schema.OpenAIModel{}
var filterFn func(name string) bool
// If filter is not specified, do not filter the list by model name
if filter == "" {
filterFn = func(_ string) bool { return true }
} else {
// If filter _IS_ specified, we compile it to a regex which is used to create the filterFn
rxp, err := regexp.Compile(filter)
if err != nil {
return nil, err
}
filterFn = func(name string) bool {
return rxp.MatchString(name)
}
}
// Start with the known configurations
for _, c := range lms.bcl.GetAllBackendConfigs() {
if excludeConfigured {
mm[c.Model] = nil
}
if filterFn(c.Name) {
dataModels = append(dataModels, schema.OpenAIModel{ID: c.Name, Object: "model"})
}
}
// Then iterate through the loose files:
for _, m := range models {
// And only adds them if they shouldn't be skipped.
if _, exists := mm[m]; !exists && filterFn(m) {
dataModels = append(dataModels, schema.OpenAIModel{ID: m, Object: "model"})
}
}
return dataModels, nil
}

View File

@ -1,13 +1,14 @@
package startup_test
package services_test
import (
"fmt"
"os"
"path/filepath"
. "github.com/go-skynet/LocalAI/pkg/startup"
"github.com/go-skynet/LocalAI/pkg/utils"
. "github.com/go-skynet/LocalAI/core/services"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)

808
core/services/openai.go Normal file
View File

@ -0,0 +1,808 @@
package services
import (
"encoding/json"
"errors"
"fmt"
"strings"
"sync"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grammar"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/google/uuid"
"github.com/imdario/mergo"
"github.com/rs/zerolog/log"
)
type endpointGenerationConfigurationFn func(bc *config.BackendConfig, request *schema.OpenAIRequest) endpointConfiguration
type endpointConfiguration struct {
SchemaObject string
TemplatePath string
TemplateData model.PromptTemplateData
ResultMappingFn func(resp *backend.LLMResponse, index int) schema.Choice
CompletionMappingFn func(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse]
TokenMappingFn func(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse]
}
// TODO: This is used for completion and edit. I am pretty sure I forgot parts, but fix it later.
func simpleMapper(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse] {
if resp.Error != nil || resp.Value == nil {
return concurrency.ErrorOr[*schema.OpenAIResponse]{Error: resp.Error}
}
return concurrency.ErrorOr[*schema.OpenAIResponse]{
Value: &schema.OpenAIResponse{
Choices: []schema.Choice{
{
Text: resp.Value.Response,
},
},
Usage: schema.OpenAIUsage{
PromptTokens: resp.Value.Usage.Prompt,
CompletionTokens: resp.Value.Usage.Completion,
TotalTokens: resp.Value.Usage.Prompt + resp.Value.Usage.Completion,
},
},
}
}
// TODO: Consider alternative names for this.
// The purpose of this struct is to hold a reference to the OpenAI request context information
// This keeps things simple within core/services/openai.go and allows consumers to "see" this information if they need it
type OpenAIRequestTraceID struct {
ID string
Created int
}
// This type split out from core/backend/llm.go - I'm still not _totally_ sure about this, but it seems to make sense to keep the generic LLM code from the OpenAI specific higher level functionality
type OpenAIService struct {
bcl *config.BackendConfigLoader
ml *model.ModelLoader
appConfig *config.ApplicationConfig
llmbs *backend.LLMBackendService
}
func NewOpenAIService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig, llmbs *backend.LLMBackendService) *OpenAIService {
return &OpenAIService{
bcl: bcl,
ml: ml,
appConfig: appConfig,
llmbs: llmbs,
}
}
// Keeping in place as a reminder to POTENTIALLY ADD MORE VALIDATION HERE???
func (oais *OpenAIService) getConfig(request *schema.OpenAIRequest) (*config.BackendConfig, *schema.OpenAIRequest, error) {
return oais.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, oais.appConfig)
}
// TODO: It would be a lot less messy to make a return struct that had references to each of these channels
// INTENTIONALLY not doing that quite yet - I believe we need to let the references to unused channels die for the GC to automatically collect -- can we manually free()?
// finalResultsChannel is the primary async return path: one result for the entire request.
// promptResultsChannels is DUBIOUS. It's expected to be raw fan-out used within the function itself, but I am exposing for testing? One bundle of LLMResponseBundle per PromptString? Gets all N completions for a single prompt.
// completionsChannel is a channel that emits one *LLMResponse per generated completion, be that different prompts or N. Seems the most useful other than "entire request" Request is available to attempt tracing???
// tokensChannel is a channel that emits one *LLMResponse per generated token. Let's see what happens!
func (oais *OpenAIService) Completion(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool) (
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], promptResultsChannels []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle],
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
return oais.GenerateTextFromRequest(request, func(bc *config.BackendConfig, request *schema.OpenAIRequest) endpointConfiguration {
return endpointConfiguration{
SchemaObject: "text_completion",
TemplatePath: bc.TemplateConfig.Completion,
TemplateData: model.PromptTemplateData{
SystemPrompt: bc.SystemPrompt,
},
ResultMappingFn: func(resp *backend.LLMResponse, promptIndex int) schema.Choice {
return schema.Choice{
Index: promptIndex,
FinishReason: "stop",
Text: resp.Response,
}
},
CompletionMappingFn: simpleMapper,
TokenMappingFn: simpleMapper,
}
}, notifyOnPromptResult, notifyOnToken, nil)
}
func (oais *OpenAIService) Edit(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool) (
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], promptResultsChannels []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle],
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
return oais.GenerateTextFromRequest(request, func(bc *config.BackendConfig, request *schema.OpenAIRequest) endpointConfiguration {
return endpointConfiguration{
SchemaObject: "edit",
TemplatePath: bc.TemplateConfig.Edit,
TemplateData: model.PromptTemplateData{
SystemPrompt: bc.SystemPrompt,
Instruction: request.Instruction,
},
ResultMappingFn: func(resp *backend.LLMResponse, promptIndex int) schema.Choice {
return schema.Choice{
Index: promptIndex,
FinishReason: "stop",
Text: resp.Response,
}
},
CompletionMappingFn: simpleMapper,
TokenMappingFn: simpleMapper,
}
}, notifyOnPromptResult, notifyOnToken, nil)
}
func (oais *OpenAIService) Chat(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool) (
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse],
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
return oais.GenerateFromMultipleMessagesChatRequest(request, notifyOnPromptResult, notifyOnToken, nil)
}
func (oais *OpenAIService) GenerateTextFromRequest(request *schema.OpenAIRequest, endpointConfigFn endpointGenerationConfigurationFn, notifyOnPromptResult bool, notifyOnToken bool, initialTraceID *OpenAIRequestTraceID) (
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], promptResultsChannels []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle],
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
if initialTraceID == nil {
traceID = &OpenAIRequestTraceID{
ID: uuid.New().String(),
Created: int(time.Now().Unix()),
}
} else {
traceID = initialTraceID
}
bc, request, err := oais.getConfig(request)
if err != nil {
log.Error().Err(err).Msgf("[oais::GenerateTextFromRequest] error getting configuration")
return
}
if request.ResponseFormat.Type == "json_object" {
request.Grammar = grammar.JSONBNF
}
bc.Grammar = request.Grammar
if request.Stream && len(bc.PromptStrings) > 1 {
log.Warn().Msg("potentially cannot handle more than 1 `PromptStrings` when Streaming?")
}
rawFinalResultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
finalResultChannel = rawFinalResultChannel
promptResultsChannels = []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle]{}
var rawCompletionsChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
var rawTokenChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
if notifyOnPromptResult {
rawCompletionsChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
}
if notifyOnToken {
rawTokenChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
}
promptResultsChannelLock := sync.Mutex{}
endpointConfig := endpointConfigFn(bc, request)
if len(endpointConfig.TemplatePath) == 0 {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if oais.ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", bc.Model)) {
endpointConfig.TemplatePath = bc.Model
} else {
log.Warn().Msgf("failed to find any template for %+v", request)
}
}
setupWG := sync.WaitGroup{}
var prompts []string
if lPS := len(bc.PromptStrings); lPS > 0 {
setupWG.Add(lPS)
prompts = bc.PromptStrings
} else {
setupWG.Add(len(bc.InputStrings))
prompts = bc.InputStrings
}
var setupError error = nil
for pI, p := range prompts {
go func(promptIndex int, prompt string) {
if endpointConfig.TemplatePath != "" {
promptTemplateData := model.PromptTemplateData{
Input: prompt,
}
err := mergo.Merge(promptTemplateData, endpointConfig.TemplateData, mergo.WithOverride)
if err == nil {
templatedInput, err := oais.ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, endpointConfig.TemplatePath, promptTemplateData)
if err == nil {
prompt = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", prompt)
}
}
}
log.Debug().Msgf("[OAIS GenerateTextFromRequest] Prompt: %q", prompt)
promptResultsChannel, completionChannels, tokenChannels, err := oais.llmbs.GenerateText(prompt, request, bc,
func(r *backend.LLMResponse) schema.Choice {
return endpointConfig.ResultMappingFn(r, promptIndex)
}, notifyOnPromptResult, notifyOnToken)
if err != nil {
log.Error().Msgf("Unable to generate text prompt: %q\nerr: %q", prompt, err)
promptResultsChannelLock.Lock()
setupError = errors.Join(setupError, err)
promptResultsChannelLock.Unlock()
setupWG.Done()
return
}
if notifyOnPromptResult {
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(completionChannels, endpointConfig.CompletionMappingFn), rawCompletionsChannel, true)
}
if notifyOnToken {
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(tokenChannels, endpointConfig.TokenMappingFn), rawTokenChannel, true)
}
promptResultsChannelLock.Lock()
promptResultsChannels = append(promptResultsChannels, promptResultsChannel)
promptResultsChannelLock.Unlock()
setupWG.Done()
}(pI, p)
}
setupWG.Wait()
// If any of the setup goroutines experienced an error, quit early here.
if setupError != nil {
go func() {
log.Error().Err(setupError).Msgf("[OAIS GenerateTextFromRequest] caught an error during setup")
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: setupError}
close(rawFinalResultChannel)
}()
return
}
initialResponse := &schema.OpenAIResponse{
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model,
Object: endpointConfig.SchemaObject,
Usage: schema.OpenAIUsage{},
}
// utils.SliceOfChannelsRawMerger[[]schema.Choice](promptResultsChannels, rawFinalResultChannel, func(results []schema.Choice) (*schema.OpenAIResponse, error) {
concurrency.SliceOfChannelsReducer(
promptResultsChannels, rawFinalResultChannel,
func(iv concurrency.ErrorOr[*backend.LLMResponseBundle], result concurrency.ErrorOr[*schema.OpenAIResponse]) concurrency.ErrorOr[*schema.OpenAIResponse] {
if iv.Error != nil {
result.Error = iv.Error
return result
}
result.Value.Usage.PromptTokens += iv.Value.Usage.Prompt
result.Value.Usage.CompletionTokens += iv.Value.Usage.Completion
result.Value.Usage.TotalTokens = result.Value.Usage.PromptTokens + result.Value.Usage.CompletionTokens
result.Value.Choices = append(result.Value.Choices, iv.Value.Response...)
return result
}, concurrency.ErrorOr[*schema.OpenAIResponse]{Value: initialResponse}, true)
completionsChannel = rawCompletionsChannel
tokenChannel = rawTokenChannel
return
}
// TODO: For porting sanity, this is distinct from GenerateTextFromRequest and is _currently_ specific to Chat purposes
// this is not a final decision -- just a reality of moving a lot of parts at once
// / This has _become_ Chat which wasn't the goal... More cleanup in the future once it's stable?
func (oais *OpenAIService) GenerateFromMultipleMessagesChatRequest(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool, initialTraceID *OpenAIRequestTraceID) (
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse],
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
if initialTraceID == nil {
traceID = &OpenAIRequestTraceID{
ID: uuid.New().String(),
Created: int(time.Now().Unix()),
}
} else {
traceID = initialTraceID
}
bc, request, err := oais.getConfig(request)
if err != nil {
return
}
// Allow the user to set custom actions via config file
// to be "embedded" in each model
noActionName := "answer"
noActionDescription := "use this action to answer without performing any action"
if bc.FunctionsConfig.NoActionFunctionName != "" {
noActionName = bc.FunctionsConfig.NoActionFunctionName
}
if bc.FunctionsConfig.NoActionDescriptionName != "" {
noActionDescription = bc.FunctionsConfig.NoActionDescriptionName
}
if request.ResponseFormat.Type == "json_object" {
request.Grammar = grammar.JSONBNF
}
bc.Grammar = request.Grammar
processFunctions := false
funcs := grammar.Functions{}
// process functions if we have any defined or if we have a function call string
if len(request.Functions) > 0 && bc.ShouldUseFunctions() {
log.Debug().Msgf("Response needs to process functions")
processFunctions = true
noActionGrammar := grammar.Function{
Name: noActionName,
Description: noActionDescription,
Parameters: map[string]interface{}{
"properties": map[string]interface{}{
"message": map[string]interface{}{
"type": "string",
"description": "The message to reply the user with",
}},
},
}
// Append the no action function
funcs = append(funcs, request.Functions...)
if !bc.FunctionsConfig.DisableNoAction {
funcs = append(funcs, noActionGrammar)
}
// Force picking one of the functions by the request
if bc.FunctionToCall() != "" {
funcs = funcs.Select(bc.FunctionToCall())
}
// Update input grammar
jsStruct := funcs.ToJSONStructure()
bc.Grammar = jsStruct.Grammar("", bc.FunctionsConfig.ParallelCalls)
} else if request.JSONFunctionGrammarObject != nil {
bc.Grammar = request.JSONFunctionGrammarObject.Grammar("", bc.FunctionsConfig.ParallelCalls)
}
if request.Stream && processFunctions {
log.Warn().Msg("Streaming + Functions is highly experimental in this version")
}
var predInput string
if !bc.TemplateConfig.UseTokenizerTemplate || processFunctions {
suppressConfigSystemPrompt := false
mess := []string{}
for messageIndex, i := range request.Messages {
var content string
role := i.Role
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
roleFn := "assistant_function_call"
r := bc.Roles[roleFn]
if r != "" {
role = roleFn
}
}
r := bc.Roles[role]
contentExists := i.Content != nil && i.StringContent != ""
fcall := i.FunctionCall
if len(i.ToolCalls) > 0 {
fcall = i.ToolCalls
}
// First attempt to populate content via a chat message specific template
if bc.TemplateConfig.ChatMessage != "" {
chatMessageData := model.ChatMessageTemplateData{
SystemPrompt: bc.SystemPrompt,
Role: r,
RoleName: role,
Content: i.StringContent,
FunctionCall: fcall,
FunctionName: i.Name,
LastMessage: messageIndex == (len(request.Messages) - 1),
Function: bc.Grammar != "" && (messageIndex == (len(request.Messages) - 1)),
MessageIndex: messageIndex,
}
templatedChatMessage, err := oais.ml.EvaluateTemplateForChatMessage(bc.TemplateConfig.ChatMessage, chatMessageData)
if err != nil {
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, bc.TemplateConfig.ChatMessage, err)
} else {
if templatedChatMessage == "" {
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", bc.TemplateConfig.ChatMessage, chatMessageData)
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
}
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
content = templatedChatMessage
}
}
marshalAnyRole := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
}
marshalAny := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
}
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
if content == "" {
if r != "" {
if contentExists {
content = fmt.Sprint(r, i.StringContent)
}
if i.FunctionCall != nil {
marshalAnyRole(i.FunctionCall)
}
} else {
if contentExists {
content = fmt.Sprint(i.StringContent)
}
if i.FunctionCall != nil {
marshalAny(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAny(i.ToolCalls)
}
}
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
if contentExists && role == "system" {
suppressConfigSystemPrompt = true
}
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
log.Debug().Msgf("Prompt (before templating): %s", predInput)
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if oais.ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", bc.Model)) {
templateFile = bc.Model
}
if bc.TemplateConfig.Chat != "" && !processFunctions {
templateFile = bc.TemplateConfig.Chat
}
if bc.TemplateConfig.Functions != "" && processFunctions {
templateFile = bc.TemplateConfig.Functions
}
if templateFile != "" {
templatedInput, err := oais.ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: bc.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
}
}
}
log.Debug().Msgf("Prompt (after templating): %s", predInput)
if processFunctions {
log.Debug().Msgf("Grammar: %+v", bc.Grammar)
}
rawFinalResultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
var rawCompletionsChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
var rawTokenChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
if notifyOnPromptResult {
rawCompletionsChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
}
if notifyOnToken {
rawTokenChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
}
rawResultChannel, individualCompletionChannels, tokenChannels, err := oais.llmbs.GenerateText(predInput, request, bc, func(resp *backend.LLMResponse) schema.Choice {
return schema.Choice{
Index: 0, // ???
FinishReason: "stop",
Message: &schema.Message{
Role: "assistant",
Content: resp.Response,
},
}
}, notifyOnPromptResult, notifyOnToken)
chatSimpleMappingFn := func(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse] {
if resp.Error != nil || resp.Value == nil {
return concurrency.ErrorOr[*schema.OpenAIResponse]{Error: resp.Error}
}
return concurrency.ErrorOr[*schema.OpenAIResponse]{
Value: &schema.OpenAIResponse{
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
Delta: &schema.Message{
Role: "assistant",
Content: resp.Value.Response,
},
Index: 0,
},
},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: resp.Value.Usage.Prompt,
CompletionTokens: resp.Value.Usage.Completion,
TotalTokens: resp.Value.Usage.Prompt + resp.Value.Usage.Completion,
},
},
}
}
if notifyOnPromptResult {
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(individualCompletionChannels, chatSimpleMappingFn), rawCompletionsChannel, true)
}
if notifyOnToken {
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(tokenChannels, chatSimpleMappingFn), rawTokenChannel, true)
}
go func() {
rawResult := <-rawResultChannel
if rawResult.Error != nil {
log.Warn().Msgf("OpenAIService::processTools GenerateText error [DEBUG THIS?] %q", rawResult.Error)
return
}
llmResponseChoices := rawResult.Value.Response
if processFunctions && len(llmResponseChoices) > 1 {
log.Warn().Msgf("chat functions response with %d choices in response, debug this?", len(llmResponseChoices))
log.Debug().Msgf("%+v", llmResponseChoices)
}
for _, result := range rawResult.Value.Response {
// If no functions, just return the raw result.
if !processFunctions {
resp := schema.OpenAIResponse{
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{result},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: rawResult.Value.Usage.Prompt,
CompletionTokens: rawResult.Value.Usage.Completion,
TotalTokens: rawResult.Value.Usage.Prompt + rawResult.Value.Usage.Completion,
},
}
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &resp}
continue
}
// At this point, things are function specific!
// Oh no this can't be the right way to do this... but it works. Save us, mudler!
fString := fmt.Sprintf("%s", result.Message.Content)
results := parseFunctionCall(fString, bc.FunctionsConfig.ParallelCalls)
noActionToRun := (len(results) > 0 && results[0].name == noActionName)
if noActionToRun {
log.Debug().Msg("-- noActionToRun branch --")
initialMessage := schema.OpenAIResponse{
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: ""}}},
Object: "stop",
}
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &initialMessage}
result, err := oais.handleQuestion(bc, request, results[0].arguments, predInput)
if err != nil {
log.Error().Msgf("error handling question: %s", err.Error())
return
}
resp := schema.OpenAIResponse{
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: rawResult.Value.Usage.Prompt,
CompletionTokens: rawResult.Value.Usage.Completion,
TotalTokens: rawResult.Value.Usage.Prompt + rawResult.Value.Usage.Completion,
},
}
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &resp}
} else {
log.Debug().Msgf("[GenerateFromMultipleMessagesChatRequest] fnResultsBranch: %+v", results)
for i, ss := range results {
name, args := ss.name, ss.arguments
initialMessage := schema.OpenAIResponse{
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
FinishReason: "function_call",
Message: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: traceID.ID,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
Arguments: args,
},
},
},
}}},
Object: "chat.completion.chunk",
}
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &initialMessage}
}
}
}
close(rawFinalResultChannel)
}()
finalResultChannel = rawFinalResultChannel
completionsChannel = rawCompletionsChannel
tokenChannel = rawTokenChannel
return
}
func (oais *OpenAIService) handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, args, prompt string) (string, error) {
log.Debug().Msgf("[handleQuestion called] nothing to do, computing a reply")
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(args), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = oais.llmbs.Finetune(*config, prompt, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
return message, nil
}
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU/GPU) another computation
config.Grammar = ""
images := []string{}
for _, m := range input.Messages {
images = append(images, m.StringImages...)
}
resultChannel, _, err := oais.llmbs.Inference(input.Context, &backend.LLMRequest{
Text: prompt,
Images: images,
RawMessages: input.Messages, // Experimental
}, config, false)
if err != nil {
log.Error().Msgf("inference setup error: %s", err.Error())
return "", err
}
raw := <-resultChannel
if raw.Error != nil {
log.Error().Msgf("inference error: %q", raw.Error.Error())
return "", err
}
if raw.Value == nil {
log.Warn().Msgf("nil inference response")
return "", nil
}
return oais.llmbs.Finetune(*config, prompt, raw.Value.Response), nil
}
type funcCallResults struct {
name string
arguments string
}
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
results := []funcCallResults{}
// TODO: use generics to avoid this code duplication
if multipleResults {
ss := []map[string]interface{}{}
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
for _, s := range ss {
func_name, ok := s["function"]
if !ok {
continue
}
args, ok := s["arguments"]
if !ok {
continue
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
continue
}
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
}
} else {
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s := utils.EscapeNewLines(llmresult)
if err := json.Unmarshal([]byte(s), &ss); err != nil {
log.Error().Msgf("error unmarshalling JSON: %s", err.Error())
return results
}
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name, ok := ss["function"]
if !ok {
log.Debug().Msgf("ss[function] is not OK!, llm result: %q", llmresult)
return results
}
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
if !ok {
log.Debug().Msg("ss[arguments] is not OK!")
return results
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
log.Debug().Msgf("unexpected func_name: %+v", func_name)
return results
}
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
}
return results
}

View File

@ -4,17 +4,21 @@ import (
"fmt"
"os"
"github.com/go-skynet/LocalAI/core"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
openaiendpoint "github.com/go-skynet/LocalAI/core/http/endpoints/openai" // TODO: This is dubious. Fix this when splitting assistant api up.
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/go-skynet/LocalAI/pkg/model"
pkgStartup "github.com/go-skynet/LocalAI/pkg/startup"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
)
func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.ModelLoader, *config.ApplicationConfig, error) {
// (*config.BackendConfigLoader, *model.ModelLoader, *config.ApplicationConfig, error) {
func Startup(opts ...config.AppOption) (*core.Application, error) {
options := config.NewApplicationConfig(opts...)
zerolog.SetGlobalLevel(zerolog.InfoLevel)
@ -27,68 +31,75 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
// Make sure directories exists
if options.ModelPath == "" {
return nil, nil, nil, fmt.Errorf("options.ModelPath cannot be empty")
return nil, fmt.Errorf("options.ModelPath cannot be empty")
}
err := os.MkdirAll(options.ModelPath, 0755)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to create ModelPath: %q", err)
return nil, fmt.Errorf("unable to create ModelPath: %q", err)
}
if options.ImageDir != "" {
err := os.MkdirAll(options.ImageDir, 0755)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to create ImageDir: %q", err)
return nil, fmt.Errorf("unable to create ImageDir: %q", err)
}
}
if options.AudioDir != "" {
err := os.MkdirAll(options.AudioDir, 0755)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to create AudioDir: %q", err)
return nil, fmt.Errorf("unable to create AudioDir: %q", err)
}
}
if options.UploadDir != "" {
err := os.MkdirAll(options.UploadDir, 0755)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to create UploadDir: %q", err)
return nil, fmt.Errorf("unable to create UploadDir: %q", err)
}
}
if options.ConfigsDir != "" {
err := os.MkdirAll(options.ConfigsDir, 0755)
if err != nil {
return nil, fmt.Errorf("unable to create ConfigsDir: %q", err)
}
}
//
pkgStartup.PreloadModelsConfigurations(options.ModelLibraryURL, options.ModelPath, options.ModelsURL...)
// Load config jsons
utils.LoadConfig(options.UploadDir, openaiendpoint.UploadedFilesFile, &openaiendpoint.UploadedFiles)
utils.LoadConfig(options.ConfigsDir, openaiendpoint.AssistantsConfigFile, &openaiendpoint.Assistants)
utils.LoadConfig(options.ConfigsDir, openaiendpoint.AssistantsFileConfigFile, &openaiendpoint.AssistantFiles)
cl := config.NewBackendConfigLoader()
ml := model.NewModelLoader(options.ModelPath)
app := createApplication(options)
configLoaderOpts := options.ToConfigLoaderOptions()
services.PreloadModelsConfigurations(options.ModelLibraryURL, options.ModelPath, options.ModelsURL...)
if err := cl.LoadBackendConfigsFromPath(options.ModelPath, configLoaderOpts...); err != nil {
if err := app.BackendConfigLoader.LoadBackendConfigsFromPath(options.ModelPath, app.ApplicationConfig.ToConfigLoaderOptions()...); err != nil {
log.Error().Err(err).Msg("error loading config files")
}
if options.ConfigFile != "" {
if err := cl.LoadBackendConfigFile(options.ConfigFile, configLoaderOpts...); err != nil {
if err := app.BackendConfigLoader.LoadBackendConfigFile(options.ConfigFile, app.ApplicationConfig.ToConfigLoaderOptions()...); err != nil {
log.Error().Err(err).Msg("error loading config file")
}
}
if err := cl.Preload(options.ModelPath); err != nil {
if err := app.BackendConfigLoader.Preload(options.ModelPath); err != nil {
log.Error().Err(err).Msg("error downloading models")
}
if options.PreloadJSONModels != "" {
if err := services.ApplyGalleryFromString(options.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
return nil, nil, nil, err
if err := services.ApplyGalleryFromString(options.ModelPath, options.PreloadJSONModels, app.BackendConfigLoader, options.Galleries); err != nil {
return nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := services.ApplyGalleryFromFile(options.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
return nil, nil, nil, err
if err := services.ApplyGalleryFromFile(options.ModelPath, options.PreloadModelsFromPath, app.BackendConfigLoader, options.Galleries); err != nil {
return nil, err
}
}
if options.Debug {
for _, v := range cl.ListBackendConfigs() {
cfg, _ := cl.GetBackendConfig(v)
for _, v := range app.BackendConfigLoader.ListBackendConfigs() {
cfg, _ := app.BackendConfigLoader.GetBackendConfig(v)
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
}
}
@ -106,17 +117,17 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
go func() {
<-options.Context.Done()
log.Debug().Msgf("Context canceled, shutting down")
ml.StopAllGRPC()
app.ModelLoader.StopAllGRPC()
}()
if options.WatchDog {
wd := model.NewWatchDog(
ml,
app.ModelLoader,
options.WatchDogBusyTimeout,
options.WatchDogIdleTimeout,
options.WatchDogBusy,
options.WatchDogIdle)
ml.SetWatchDog(wd)
app.ModelLoader.SetWatchDog(wd)
go wd.Run()
go func() {
<-options.Context.Done()
@ -126,5 +137,35 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
}
log.Info().Msg("core/startup process completed!")
return cl, ml, options, nil
return app, nil
}
// In Lieu of a proper DI framework, this function wires up the Application manually.
// This is in core/startup rather than core/state.go to keep package references clean!
func createApplication(appConfig *config.ApplicationConfig) *core.Application {
app := &core.Application{
ApplicationConfig: appConfig,
BackendConfigLoader: config.NewBackendConfigLoader(),
ModelLoader: model.NewModelLoader(appConfig.ModelPath),
}
var err error
app.EmbeddingsBackendService = backend.NewEmbeddingsBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.ImageGenerationBackendService = backend.NewImageGenerationBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.LLMBackendService = backend.NewLLMBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.TranscriptionBackendService = backend.NewTranscriptionBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.TextToSpeechBackendService = backend.NewTextToSpeechBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.BackendMonitorService = services.NewBackendMonitorService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.GalleryService = services.NewGalleryService(app.ApplicationConfig.ModelPath)
app.ListModelsService = services.NewListModelsService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
app.OpenAIService = services.NewOpenAIService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig, app.LLMBackendService)
app.LocalAIMetricsService, err = services.NewLocalAIMetricsService()
if err != nil {
log.Warn().Msg("Unable to initialize LocalAIMetricsService - non-fatal, optional service")
}
return app
}

41
core/state.go Normal file
View File

@ -0,0 +1,41 @@
package core
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/pkg/model"
)
// TODO: Can I come up with a better name or location for this?
// The purpose of this structure is to hold pointers to all initialized services, to make plumbing easy
// Perhaps a proper DI system is worth it in the future, but for now keep things simple.
type Application struct {
// Application-Level Config
ApplicationConfig *config.ApplicationConfig
// ApplicationState *ApplicationState
// Core Low-Level Services
BackendConfigLoader *config.BackendConfigLoader
ModelLoader *model.ModelLoader
// Backend Services
EmbeddingsBackendService *backend.EmbeddingsBackendService
ImageGenerationBackendService *backend.ImageGenerationBackendService
LLMBackendService *backend.LLMBackendService
TranscriptionBackendService *backend.TranscriptionBackendService
TextToSpeechBackendService *backend.TextToSpeechBackendService
// LocalAI System Services
BackendMonitorService *services.BackendMonitorService
GalleryService *services.GalleryService
ListModelsService *services.ListModelsService
LocalAIMetricsService *services.LocalAIMetricsService
OpenAIService *services.OpenAIService
}
// TODO [NEXT PR?]: Break up ApplicationConfig.
// Migrate over stuff that is not set via config at all - especially runtime stuff
type ApplicationState struct {
}

View File

@ -0,0 +1,25 @@
meta {
name: -completions Stream
type: http
seq: 4
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"prompt": "function downloadFile(string url, string outputPath) {",
"max_tokens": 256,
"temperature": 0.5,
"stream": true
}
}

View File

@ -0,0 +1,135 @@
package concurrency
import (
"sync"
)
// TODO: closeWhenDone bool parameter ::
// It currently is experimental, and therefore exists.
// Is there ever a situation to use false?
// This function is used to merge the results of a slice of channels of a specific result type down to a single result channel of a second type.
// mappingFn allows the caller to convert from the input type to the output type
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
func SliceOfChannelsRawMerger[IndividualResultType any, OutputResultType any](individualResultChannels []<-chan IndividualResultType, outputChannel chan<- OutputResultType, mappingFn func(IndividualResultType) (OutputResultType, error), closeWhenDone bool) *sync.WaitGroup {
var wg sync.WaitGroup
wg.Add(len(individualResultChannels))
mergingFn := func(c <-chan IndividualResultType) {
for r := range c {
mr, err := mappingFn(r)
if err == nil {
outputChannel <- mr
}
}
wg.Done()
}
for _, irc := range individualResultChannels {
go mergingFn(irc)
}
if closeWhenDone {
go func() {
wg.Wait()
close(outputChannel)
}()
}
return &wg
}
// This function is used to merge the results of a slice of channels of a specific result type down to a single result channel of THE SAME TYPE.
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
func SliceOfChannelsRawMergerWithoutMapping[ResultType any](individualResultsChannels []<-chan ResultType, outputChannel chan<- ResultType, closeWhenDone bool) *sync.WaitGroup {
return SliceOfChannelsRawMerger(individualResultsChannels, outputChannel, func(v ResultType) (ResultType, error) { return v, nil }, closeWhenDone)
}
// This function is used to merge the results of a slice of channels of a specific result type down to a single succcess result channel of a second type, and an error channel
// mappingFn allows the caller to convert from the input type to the output type
// This variant is designed to be aware of concurrency.ErrorOr[T], splitting successes from failures.
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
func SliceOfChannelsMergerWithErrors[IndividualResultType any, OutputResultType any](individualResultChannels []<-chan ErrorOr[IndividualResultType], successChannel chan<- OutputResultType, errorChannel chan<- error, mappingFn func(IndividualResultType) (OutputResultType, error), closeWhenDone bool) *sync.WaitGroup {
var wg sync.WaitGroup
wg.Add(len(individualResultChannels))
mergingFn := func(c <-chan ErrorOr[IndividualResultType]) {
for r := range c {
if r.Error != nil {
errorChannel <- r.Error
} else {
mv, err := mappingFn(r.Value)
if err != nil {
errorChannel <- err
} else {
successChannel <- mv
}
}
}
wg.Done()
}
for _, irc := range individualResultChannels {
go mergingFn(irc)
}
if closeWhenDone {
go func() {
wg.Wait()
close(successChannel)
close(errorChannel)
}()
}
return &wg
}
// This function is used to reduce down the results of a slice of channels of a specific result type down to a single result value of a second type.
// reducerFn allows the caller to convert from the input type to the output type
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
func SliceOfChannelsReducer[InputResultType any, OutputResultType any](individualResultsChannels []<-chan InputResultType, outputChannel chan<- OutputResultType,
reducerFn func(iv InputResultType, ov OutputResultType) OutputResultType, initialValue OutputResultType, closeWhenDone bool) (wg *sync.WaitGroup) {
wg = &sync.WaitGroup{}
wg.Add(len(individualResultsChannels))
reduceLock := sync.Mutex{}
reducingFn := func(c <-chan InputResultType) {
for iv := range c {
reduceLock.Lock()
initialValue = reducerFn(iv, initialValue)
reduceLock.Unlock()
}
wg.Done()
}
for _, irc := range individualResultsChannels {
go reducingFn(irc)
}
go func() {
wg.Wait()
outputChannel <- initialValue
if closeWhenDone {
close(outputChannel)
}
}()
return wg
}
// This function is primarily designed to be used in combination with the above utility functions.
// A slice of input result channels of a specific type is provided, along with a function to map those values to another type
// A slice of output result channels is returned, where each value is mapped as it comes in.
// The order of the slice will be retained.
func SliceOfChannelsTransformer[InputResultType any, OutputResultType any](inputChanels []<-chan InputResultType, mappingFn func(v InputResultType) OutputResultType) (outputChannels []<-chan OutputResultType) {
rawOutputChannels := make([]<-chan OutputResultType, len(inputChanels))
transformingFn := func(ic <-chan InputResultType, oc chan OutputResultType) {
for iv := range ic {
oc <- mappingFn(iv)
}
close(oc)
}
for ci, c := range inputChanels {
roc := make(chan OutputResultType)
go transformingFn(c, roc)
rawOutputChannels[ci] = roc
}
outputChannels = rawOutputChannels
return
}

View File

@ -0,0 +1,101 @@
package concurrency_test
// TODO: noramlly, these go in utils_tests, right? Why does this cause problems only in pkg/utils?
import (
"fmt"
"slices"
. "github.com/go-skynet/LocalAI/pkg/concurrency"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("utils/concurrency tests", func() {
It("SliceOfChannelsReducer works", func() {
individualResultsChannels := []<-chan int{}
initialValue := 0
for i := 0; i < 3; i++ {
c := make(chan int)
go func(i int, c chan int) {
for ii := 1; ii < 4; ii++ {
c <- (i * ii)
}
close(c)
}(i, c)
individualResultsChannels = append(individualResultsChannels, c)
}
Expect(len(individualResultsChannels)).To(Equal(3))
finalResultChannel := make(chan int)
wg := SliceOfChannelsReducer[int, int](individualResultsChannels, finalResultChannel, func(input int, val int) int {
return val + input
}, initialValue, true)
Expect(wg).ToNot(BeNil())
result := <-finalResultChannel
Expect(result).ToNot(Equal(0))
Expect(result).To(Equal(18))
})
It("SliceOfChannelsRawMergerWithoutMapping works", func() {
individualResultsChannels := []<-chan int{}
for i := 0; i < 3; i++ {
c := make(chan int)
go func(i int, c chan int) {
for ii := 1; ii < 4; ii++ {
c <- (i * ii)
}
close(c)
}(i, c)
individualResultsChannels = append(individualResultsChannels, c)
}
Expect(len(individualResultsChannels)).To(Equal(3))
outputChannel := make(chan int)
wg := SliceOfChannelsRawMergerWithoutMapping(individualResultsChannels, outputChannel, true)
Expect(wg).ToNot(BeNil())
outputSlice := []int{}
for v := range outputChannel {
outputSlice = append(outputSlice, v)
}
Expect(len(outputSlice)).To(Equal(9))
slices.Sort(outputSlice)
Expect(outputSlice[0]).To(BeZero())
Expect(outputSlice[3]).To(Equal(1))
Expect(outputSlice[8]).To(Equal(6))
})
It("SliceOfChannelsTransformer works", func() {
individualResultsChannels := []<-chan int{}
for i := 0; i < 3; i++ {
c := make(chan int)
go func(i int, c chan int) {
for ii := 1; ii < 4; ii++ {
c <- (i * ii)
}
close(c)
}(i, c)
individualResultsChannels = append(individualResultsChannels, c)
}
Expect(len(individualResultsChannels)).To(Equal(3))
mappingFn := func(i int) string {
return fmt.Sprintf("$%d", i)
}
outputChannels := SliceOfChannelsTransformer(individualResultsChannels, mappingFn)
Expect(len(outputChannels)).To(Equal(3))
rSlice := []string{}
for ii := 1; ii < 4; ii++ {
for i := 0; i < 3; i++ {
res := <-outputChannels[i]
rSlice = append(rSlice, res)
}
}
slices.Sort(rSlice)
Expect(rSlice[0]).To(Equal("$0"))
Expect(rSlice[3]).To(Equal("$1"))
Expect(rSlice[8]).To(Equal("$6"))
})
})

6
pkg/concurrency/types.go Normal file
View File

@ -0,0 +1,6 @@
package concurrency
type ErrorOr[T any] struct {
Value T
Error error
}

View File

@ -41,7 +41,7 @@ type Backend interface {
PredictStream(ctx context.Context, in *pb.PredictOptions, f func(s []byte), opts ...grpc.CallOption) error
GenerateImage(ctx context.Context, in *pb.GenerateImageRequest, opts ...grpc.CallOption) (*pb.Result, error)
TTS(ctx context.Context, in *pb.TTSRequest, opts ...grpc.CallOption) (*pb.Result, error)
AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.Result, error)
AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.TranscriptionResult, error)
TokenizeString(ctx context.Context, in *pb.PredictOptions, opts ...grpc.CallOption) (*pb.TokenizationResponse, error)
Status(ctx context.Context) (*pb.StatusResponse, error)

View File

@ -53,8 +53,8 @@ func (llm *Base) GenerateImage(*pb.GenerateImageRequest) error {
return fmt.Errorf("unimplemented")
}
func (llm *Base) AudioTranscription(*pb.TranscriptRequest) (schema.Result, error) {
return schema.Result{}, fmt.Errorf("unimplemented")
func (llm *Base) AudioTranscription(*pb.TranscriptRequest) (schema.TranscriptionResult, error) {
return schema.TranscriptionResult{}, fmt.Errorf("unimplemented")
}
func (llm *Base) TTS(*pb.TTSRequest) error {

View File

@ -210,7 +210,7 @@ func (c *Client) TTS(ctx context.Context, in *pb.TTSRequest, opts ...grpc.CallOp
return client.TTS(ctx, in, opts...)
}
func (c *Client) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.Result, error) {
func (c *Client) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.TranscriptionResult, error) {
if !c.parallel {
c.opMutex.Lock()
defer c.opMutex.Unlock()
@ -231,7 +231,7 @@ func (c *Client) AudioTranscription(ctx context.Context, in *pb.TranscriptReques
if err != nil {
return nil, err
}
tresult := &schema.Result{}
tresult := &schema.TranscriptionResult{}
for _, s := range res.Segments {
tks := []int{}
for _, t := range s.Tokens {

View File

@ -53,12 +53,12 @@ func (e *embedBackend) TTS(ctx context.Context, in *pb.TTSRequest, opts ...grpc.
return e.s.TTS(ctx, in)
}
func (e *embedBackend) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.Result, error) {
func (e *embedBackend) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.TranscriptionResult, error) {
r, err := e.s.AudioTranscription(ctx, in)
if err != nil {
return nil, err
}
tr := &schema.Result{}
tr := &schema.TranscriptionResult{}
for _, s := range r.Segments {
var tks []int
for _, t := range s.Tokens {

View File

@ -15,7 +15,7 @@ type LLM interface {
Load(*pb.ModelOptions) error
Embeddings(*pb.PredictOptions) ([]float32, error)
GenerateImage(*pb.GenerateImageRequest) error
AudioTranscription(*pb.TranscriptRequest) (schema.Result, error)
AudioTranscription(*pb.TranscriptRequest) (schema.TranscriptionResult, error)
TTS(*pb.TTSRequest) error
TokenizeString(*pb.PredictOptions) (pb.TokenizationResponse, error)
Status() (pb.StatusResponse, error)

View File

@ -81,7 +81,7 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
if _, err := os.Stat(uri); err == nil {
serverAddress, err := getFreeAddress()
if err != nil {
return "", fmt.Errorf("failed allocating free ports: %s", err.Error())
return "", fmt.Errorf("%s failed allocating free ports: %s", backend, err.Error())
}
// Make sure the process is executable
if err := ml.startProcess(uri, o.model, serverAddress); err != nil {
@ -134,7 +134,7 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
if !ready {
log.Debug().Msgf("GRPC Service NOT ready")
return "", fmt.Errorf("grpc service not ready")
return "", fmt.Errorf("%s grpc service not ready", backend)
}
options := *o.gRPCOptions
@ -145,10 +145,10 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
res, err := client.GRPC(o.parallelRequests, ml.wd).LoadModel(o.context, &options)
if err != nil {
return "", fmt.Errorf("could not load model: %w", err)
return "", fmt.Errorf("\"%s\" could not load model: %w", backend, err)
}
if !res.Success {
return "", fmt.Errorf("could not load model (no success): %s", res.Message)
return "", fmt.Errorf("\"%s\" could not load model (no success): %s", backend, res.Message)
}
return client, nil

View File

@ -1,85 +0,0 @@
package startup
import (
"errors"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/embedded"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
// PreloadModelsConfigurations will preload models from the given list of URLs
// It will download the model if it is not already present in the model path
// It will also try to resolve if the model is an embedded model YAML configuration
func PreloadModelsConfigurations(modelLibraryURL string, modelPath string, models ...string) {
for _, url := range models {
// As a best effort, try to resolve the model from the remote library
// if it's not resolved we try with the other method below
if modelLibraryURL != "" {
lib, err := embedded.GetRemoteLibraryShorteners(modelLibraryURL)
if err == nil {
if lib[url] != "" {
log.Debug().Msgf("[startup] model configuration is defined remotely: %s (%s)", url, lib[url])
url = lib[url]
}
}
}
url = embedded.ModelShortURL(url)
switch {
case embedded.ExistsInModelsLibrary(url):
modelYAML, err := embedded.ResolveContent(url)
// If we resolve something, just save it to disk and continue
if err != nil {
log.Error().Err(err).Msg("error resolving model content")
continue
}
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
md5Name := utils.MD5(url)
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error writing model definition")
}
case downloader.LooksLikeURL(url):
log.Debug().Msgf("[startup] resolved model to download: %s", url)
// md5 of model name
md5Name := utils.MD5(url)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
err := downloader.DownloadFile(url, modelDefinitionFilePath, "", func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
})
if err != nil {
log.Error().Err(err).Str("url", url).Str("filepath", modelDefinitionFilePath).Msg("error downloading model")
}
}
default:
if _, err := os.Stat(url); err == nil {
log.Debug().Msgf("[startup] resolved local model: %s", url)
// copy to modelPath
md5Name := utils.MD5(url)
modelYAML, err := os.ReadFile(url)
if err != nil {
log.Error().Err(err).Str("filepath", url).Msg("error reading model definition")
continue
}
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error loading model: %s")
}
} else {
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
}
}
}
}

50
pkg/utils/base64.go Normal file
View File

@ -0,0 +1,50 @@
package utils
import (
"encoding/base64"
"fmt"
"io"
"net/http"
"strings"
"time"
)
var base64DownloadClient http.Client = http.Client{
Timeout: 30 * time.Second,
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
// encodes it in base64 and returns the base64 string
// This may look weird down in pkg/utils while it is currently only used in core/config
//
// but I believe it may be useful for MQTT as well in the near future, so I'm
// extracting it while I'm thinking of it.
func GetImageURLAsBase64(s string) (string, error) {
if strings.HasPrefix(s, "http") {
// download the image
resp, err := base64DownloadClient.Get(s)
if err != nil {
return "", err
}
defer resp.Body.Close()
// read the image data into memory
data, err := io.ReadAll(resp.Body)
if err != nil {
return "", err
}
// encode the image data in base64
encoded := base64.StdEncoding.EncodeToString(data)
// return the base64 string
return encoded, nil
}
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
}
return "", fmt.Errorf("not valid string")
}