mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-24 06:46:39 +00:00
parent
af9e5a2d05
commit
47743b74ab
15
.github/workflows/test.yml
vendored
15
.github/workflows/test.yml
vendored
@ -121,8 +121,9 @@ jobs:
|
||||
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
||||
|
||||
tests-aio-container:
|
||||
runs-on: ubuntu-latest
|
||||
@ -173,8 +174,9 @@ jobs:
|
||||
make run-e2e-aio
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
||||
|
||||
tests-apple:
|
||||
runs-on: macOS-14
|
||||
@ -207,5 +209,6 @@ jobs:
|
||||
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make --jobs 4 --output-sync=target test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
18
Makefile
18
Makefile
@ -301,6 +301,9 @@ clean-tests:
|
||||
rm -rf test-dir
|
||||
rm -rf core/http/backend-assets
|
||||
|
||||
halt-backends: ## Used to clean up stray backends sometimes left running when debugging manually
|
||||
ps | grep 'backend-assets/grpc/' | awk '{print $$1}' | xargs -I {} kill -9 {}
|
||||
|
||||
## Build:
|
||||
build: prepare backend-assets grpcs ## Build the project
|
||||
$(info ${GREEN}I local-ai build info:${RESET})
|
||||
@ -365,13 +368,13 @@ run-e2e-image:
|
||||
|
||||
run-e2e-aio:
|
||||
@echo 'Running e2e AIO tests'
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio
|
||||
|
||||
test-e2e:
|
||||
@echo 'Running e2e tests'
|
||||
BUILD_TYPE=$(BUILD_TYPE) \
|
||||
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e
|
||||
|
||||
teardown-e2e:
|
||||
rm -rf $(TEST_DIR) || true
|
||||
@ -379,15 +382,15 @@ teardown-e2e:
|
||||
|
||||
test-gpt4all: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama-gguf: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
|
||||
test-tts: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
@ -645,7 +648,10 @@ backend-assets/grpc/llama-ggml: sources/go-llama-ggml sources/go-llama-ggml/libb
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
|
||||
|
||||
# EXPERIMENTAL:
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp $(CURDIR)/sources/go-llama-ggml/llama.cpp/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
|
||||
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
|
||||
|
@ -29,8 +29,8 @@ func audioToWav(src, dst string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.Result, error) {
|
||||
res := schema.Result{}
|
||||
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.TranscriptionResult, error) {
|
||||
res := schema.TranscriptionResult{}
|
||||
|
||||
dir, err := os.MkdirTemp("", "whisper")
|
||||
if err != nil {
|
||||
|
@ -21,6 +21,6 @@ func (sd *Whisper) Load(opts *pb.ModelOptions) error {
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.Result, error) {
|
||||
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.TranscriptionResult, error) {
|
||||
return Transcript(sd.whisper, opts.Dst, opts.Language, uint(opts.Threads))
|
||||
}
|
||||
|
@ -2,14 +2,100 @@ package backend
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
type EmbeddingsBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewEmbeddingsBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *EmbeddingsBackendService {
|
||||
return &EmbeddingsBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (ebs *EmbeddingsBackendService) Embeddings(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
|
||||
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
if request.Model == "" {
|
||||
request.Model = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
bc, request, err := ebs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
items := []schema.Item{}
|
||||
|
||||
for i, s := range bc.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := modelEmbedding("", s, ebs.ml, bc, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range bc.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := modelEmbedding(s, []int{}, ebs.ml, bc, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
|
||||
close(resultChannel)
|
||||
}(request)
|
||||
return resultChannel
|
||||
}
|
||||
|
||||
func modelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
modelFile := backendConfig.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
@ -1,18 +1,252 @@
|
||||
package backend
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"bufio"
|
||||
"encoding/base64"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
type ImageGenerationBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
BaseUrlForGeneratedImages string
|
||||
}
|
||||
|
||||
func NewImageGenerationBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ImageGenerationBackendService {
|
||||
return &ImageGenerationBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (igbs *ImageGenerationBackendService) GenerateImage(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
bc, request, err := igbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, igbs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
src := ""
|
||||
if request.File != "" {
|
||||
|
||||
var fileData []byte
|
||||
// check if input.File is an URL, if so download it and save it
|
||||
// to a temporary file
|
||||
if strings.HasPrefix(request.File, "http://") || strings.HasPrefix(request.File, "https://") {
|
||||
out, err := downloadFile(request.File)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed downloading file:%w", err)}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
defer os.RemoveAll(out)
|
||||
|
||||
fileData, err = os.ReadFile(out)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed reading file:%w", err)}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
} else {
|
||||
// base 64 decode the file and write it somewhere
|
||||
// that we will cleanup
|
||||
fileData, err = base64.StdEncoding.DecodeString(request.File)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(igbs.appConfig.ImageDir, "b64")
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
// write the base64 result
|
||||
writer := bufio.NewWriter(outputFile)
|
||||
_, err = writer.Write(fileData)
|
||||
if err != nil {
|
||||
outputFile.Close()
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
outputFile.Close()
|
||||
src = outputFile.Name()
|
||||
defer os.RemoveAll(src)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", bc)
|
||||
|
||||
switch bc.Backend {
|
||||
case "stablediffusion":
|
||||
bc.Backend = model.StableDiffusionBackend
|
||||
case "tinydream":
|
||||
bc.Backend = model.TinyDreamBackend
|
||||
case "":
|
||||
bc.Backend = model.StableDiffusionBackend
|
||||
if bc.Model == "" {
|
||||
bc.Model = "stablediffusion_assets" // TODO: check?
|
||||
}
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(request.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if request.ResponseFormat.Type == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
// src and clip_skip
|
||||
var result []schema.Item
|
||||
for _, i := range bc.PromptStrings {
|
||||
n := request.N
|
||||
if request.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := bc.Step
|
||||
if step == 0 {
|
||||
step = 15
|
||||
}
|
||||
|
||||
if request.Mode != 0 {
|
||||
mode = request.Mode
|
||||
}
|
||||
|
||||
if request.Step != 0 {
|
||||
step = request.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = igbs.appConfig.ImageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(tempDir, "b64")
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
if request.Seed == nil {
|
||||
zVal := 0 // Idiomatic way to do this? Actually needed?
|
||||
request.Seed = &zVal
|
||||
}
|
||||
|
||||
fn, err := imageGeneration(height, width, mode, step, *request.Seed, positive_prompt, negative_prompt, src, output, igbs.ml, bc, igbs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
item := &schema.Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = igbs.BaseUrlForGeneratedImages + base
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Data: result,
|
||||
}
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
|
||||
close(resultChannel)
|
||||
}(request)
|
||||
return resultChannel
|
||||
}
|
||||
|
||||
func imageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
|
||||
threads := backendConfig.Threads
|
||||
if *threads == 0 && appConfig.Threads != 0 {
|
||||
threads = &appConfig.Threads
|
||||
}
|
||||
|
||||
gRPCOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(backendConfig.Backend),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
@ -50,3 +284,24 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
|
||||
|
||||
return fn, nil
|
||||
}
|
||||
|
||||
// TODO: Replace this function with pkg/downloader - no reason to have a (crappier) bespoke download file fn here, but get things working before that change.
|
||||
func downloadFile(url string) (string, error) {
|
||||
// Get the data
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Create the file
|
||||
out, err := os.CreateTemp("", "image")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
// Write the body to file
|
||||
_, err = io.Copy(out, resp.Body)
|
||||
return out.Name(), err
|
||||
}
|
||||
|
@ -11,17 +11,22 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
type LLMResponse struct {
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
type LLMRequest struct {
|
||||
Id int // TODO Remove if not used.
|
||||
Text string
|
||||
Images []string
|
||||
RawMessages []schema.Message
|
||||
// TODO: Other Modalities?
|
||||
}
|
||||
|
||||
type TokenUsage struct {
|
||||
@ -29,57 +34,94 @@ type TokenUsage struct {
|
||||
Completion int
|
||||
}
|
||||
|
||||
func ModelInference(ctx context.Context, s string, messages []schema.Message, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
||||
modelFile := c.Model
|
||||
threads := c.Threads
|
||||
if *threads == 0 && o.Threads != 0 {
|
||||
threads = &o.Threads
|
||||
type LLMResponse struct {
|
||||
Request *LLMRequest
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
}
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
|
||||
// TODO: Does this belong here or in core/services/openai.go?
|
||||
type LLMResponseBundle struct {
|
||||
Request *schema.OpenAIRequest
|
||||
Response []schema.Choice
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
type LLMBackendService struct {
|
||||
bcl *config.BackendConfigLoader
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
ftMutex sync.Mutex
|
||||
cutstrings map[string]*regexp.Regexp
|
||||
}
|
||||
|
||||
func NewLLMBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *LLMBackendService {
|
||||
return &LLMBackendService{
|
||||
bcl: bcl,
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
ftMutex: sync.Mutex{},
|
||||
cutstrings: make(map[string]*regexp.Regexp),
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Should ctx param be removed and replaced with hardcoded req.Context?
|
||||
func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest, bc *config.BackendConfig, enableTokenChannel bool) (
|
||||
resultChannel <-chan concurrency.ErrorOr[*LLMResponse], tokenChannel <-chan concurrency.ErrorOr[*LLMResponse], err error) {
|
||||
|
||||
threads := bc.Threads
|
||||
if (threads == nil || *threads == 0) && llmbs.appConfig.Threads != 0 {
|
||||
threads = &llmbs.appConfig.Threads
|
||||
}
|
||||
|
||||
grpcOpts := gRPCModelOpts(bc)
|
||||
|
||||
var inferenceModel grpc.Backend
|
||||
var err error
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
opts := modelOpts(bc, llmbs.appConfig, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithAssetDir(llmbs.appConfig.AssetsDestination),
|
||||
model.WithModel(bc.Model),
|
||||
model.WithContext(llmbs.appConfig.Context),
|
||||
})
|
||||
|
||||
if c.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(c.Backend))
|
||||
if bc.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(bc.Backend))
|
||||
}
|
||||
|
||||
// Check if the modelFile exists, if it doesn't try to load it from the gallery
|
||||
if o.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
||||
// Check if bc.Model exists, if it doesn't try to load it from the gallery
|
||||
if llmbs.appConfig.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(bc.Model); os.IsNotExist(err) {
|
||||
utils.ResetDownloadTimers()
|
||||
// if we failed to load the model, we try to download it
|
||||
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
err := gallery.InstallModelFromGalleryByName(llmbs.appConfig.Galleries, bc.Model, llmbs.appConfig.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(opts...)
|
||||
if bc.Backend == "" {
|
||||
log.Debug().Msgf("backend not known for %q, falling back to greedy loader to find it", bc.Model)
|
||||
inferenceModel, err = llmbs.ml.GreedyLoader(opts...)
|
||||
} else {
|
||||
inferenceModel, err = loader.BackendLoader(opts...)
|
||||
inferenceModel, err = llmbs.ml.BackendLoader(opts...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
log.Error().Err(err).Msg("[llmbs.Inference] failed to load a backend")
|
||||
return
|
||||
}
|
||||
|
||||
var protoMessages []*proto.Message
|
||||
// if we are using the tokenizer template, we need to convert the messages to proto messages
|
||||
// unless the prompt has already been tokenized (non-chat endpoints + functions)
|
||||
if c.TemplateConfig.UseTokenizerTemplate && s == "" {
|
||||
protoMessages = make([]*proto.Message, len(messages), len(messages))
|
||||
for i, message := range messages {
|
||||
grpcPredOpts := gRPCPredictOpts(bc, llmbs.appConfig.ModelPath)
|
||||
grpcPredOpts.Prompt = req.Text
|
||||
grpcPredOpts.Images = req.Images
|
||||
|
||||
if bc.TemplateConfig.UseTokenizerTemplate && req.Text == "" {
|
||||
grpcPredOpts.UseTokenizerTemplate = true
|
||||
protoMessages := make([]*proto.Message, len(req.RawMessages), len(req.RawMessages))
|
||||
for i, message := range req.RawMessages {
|
||||
protoMessages[i] = &proto.Message{
|
||||
Role: message.Role,
|
||||
}
|
||||
@ -87,47 +129,32 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
|
||||
case string:
|
||||
protoMessages[i].Content = ct
|
||||
default:
|
||||
return nil, fmt.Errorf("Unsupported type for schema.Message.Content for inference: %T", ct)
|
||||
err = fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
|
||||
fn := func() (LLMResponse, error) {
|
||||
opts := gRPCPredictOpts(c, loader.ModelPath)
|
||||
opts.Prompt = s
|
||||
opts.Messages = protoMessages
|
||||
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
|
||||
opts.Images = images
|
||||
|
||||
tokenUsage := TokenUsage{}
|
||||
|
||||
// check the per-model feature flag for usage, since tokenCallback may have a cost.
|
||||
// Defaults to off as for now it is still experimental
|
||||
if c.FeatureFlag.Enabled("usage") {
|
||||
userTokenCallback := tokenCallback
|
||||
if userTokenCallback == nil {
|
||||
userTokenCallback = func(token string, usage TokenUsage) bool {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, grpcPredOpts)
|
||||
if pErr == nil && promptInfo.Length > 0 {
|
||||
tokenUsage.Prompt = int(promptInfo.Length)
|
||||
}
|
||||
|
||||
tokenCallback = func(token string, usage TokenUsage) bool {
|
||||
tokenUsage.Completion++
|
||||
return userTokenCallback(token, tokenUsage)
|
||||
}
|
||||
}
|
||||
rawResultChannel := make(chan concurrency.ErrorOr[*LLMResponse])
|
||||
// TODO this next line is the biggest argument for taking named return values _back_ out!!!
|
||||
var rawTokenChannel chan concurrency.ErrorOr[*LLMResponse]
|
||||
|
||||
if tokenCallback != nil {
|
||||
if enableTokenChannel {
|
||||
rawTokenChannel = make(chan concurrency.ErrorOr[*LLMResponse])
|
||||
|
||||
// TODO Needs better name
|
||||
ss := ""
|
||||
|
||||
go func() {
|
||||
var partialRune []byte
|
||||
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
|
||||
err := inferenceModel.PredictStream(ctx, grpcPredOpts, func(chars []byte) {
|
||||
partialRune = append(partialRune, chars...)
|
||||
|
||||
for len(partialRune) > 0 {
|
||||
@ -137,54 +164,126 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
|
||||
break
|
||||
}
|
||||
|
||||
tokenCallback(string(r), tokenUsage)
|
||||
tokenUsage.Completion++
|
||||
rawTokenChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: string(r),
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
|
||||
ss += string(r)
|
||||
|
||||
partialRune = partialRune[size:]
|
||||
}
|
||||
})
|
||||
return LLMResponse{
|
||||
close(rawTokenChannel)
|
||||
if err != nil {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
|
||||
} else {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: ss,
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
} else {
|
||||
// TODO: Is the chicken bit the only way to get here? is that acceptable?
|
||||
reply, err := inferenceModel.Predict(ctx, opts)
|
||||
if err != nil {
|
||||
return LLMResponse{}, err
|
||||
}}
|
||||
}
|
||||
close(rawResultChannel)
|
||||
}()
|
||||
} else {
|
||||
go func() {
|
||||
reply, err := inferenceModel.Predict(ctx, grpcPredOpts)
|
||||
if tokenUsage.Prompt == 0 {
|
||||
tokenUsage.Prompt = int(reply.PromptTokens)
|
||||
}
|
||||
if tokenUsage.Completion == 0 {
|
||||
tokenUsage.Completion = int(reply.Tokens)
|
||||
}
|
||||
return LLMResponse{
|
||||
if err != nil {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
|
||||
close(rawResultChannel)
|
||||
} else {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: string(reply.Message),
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
}}
|
||||
close(rawResultChannel)
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
return fn, nil
|
||||
resultChannel = rawResultChannel
|
||||
tokenChannel = rawTokenChannel
|
||||
return
|
||||
}
|
||||
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
// TODO: Should predInput be a seperate param still, or should this fn handle extracting it from request??
|
||||
func (llmbs *LLMBackendService) GenerateText(predInput string, request *schema.OpenAIRequest, bc *config.BackendConfig,
|
||||
mappingFn func(*LLMResponse) schema.Choice, enableCompletionChannels bool, enableTokenChannels bool) (
|
||||
// Returns:
|
||||
resultChannel <-chan concurrency.ErrorOr[*LLMResponseBundle], completionChannels []<-chan concurrency.ErrorOr[*LLMResponse], tokenChannels []<-chan concurrency.ErrorOr[*LLMResponse], err error) {
|
||||
|
||||
func Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
rawChannel := make(chan concurrency.ErrorOr[*LLMResponseBundle])
|
||||
resultChannel = rawChannel
|
||||
|
||||
if request.N == 0 { // number of completions to return
|
||||
request.N = 1
|
||||
}
|
||||
images := []string{}
|
||||
for _, m := range request.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
for i := 0; i < request.N; i++ {
|
||||
|
||||
individualResultChannel, tokenChannel, infErr := llmbs.Inference(request.Context, &LLMRequest{
|
||||
Text: predInput,
|
||||
Images: images,
|
||||
RawMessages: request.Messages,
|
||||
}, bc, enableTokenChannels)
|
||||
if infErr != nil {
|
||||
err = infErr // Avoids complaints about redeclaring err but looks dumb
|
||||
return
|
||||
}
|
||||
completionChannels = append(completionChannels, individualResultChannel)
|
||||
tokenChannels = append(tokenChannels, tokenChannel)
|
||||
}
|
||||
|
||||
go func() {
|
||||
initialBundle := LLMResponseBundle{
|
||||
Request: request,
|
||||
Response: []schema.Choice{},
|
||||
Usage: TokenUsage{},
|
||||
}
|
||||
|
||||
wg := concurrency.SliceOfChannelsReducer(completionChannels, rawChannel, func(iv concurrency.ErrorOr[*LLMResponse], ov concurrency.ErrorOr[*LLMResponseBundle]) concurrency.ErrorOr[*LLMResponseBundle] {
|
||||
if iv.Error != nil {
|
||||
ov.Error = iv.Error
|
||||
// TODO: Decide if we should wipe partials or not?
|
||||
return ov
|
||||
}
|
||||
ov.Value.Usage.Prompt += iv.Value.Usage.Prompt
|
||||
ov.Value.Usage.Completion += iv.Value.Usage.Completion
|
||||
|
||||
ov.Value.Response = append(ov.Value.Response, mappingFn(iv.Value))
|
||||
return ov
|
||||
}, concurrency.ErrorOr[*LLMResponseBundle]{Value: &initialBundle}, true)
|
||||
wg.Wait()
|
||||
|
||||
}()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (llmbs *LLMBackendService) Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = input + prediction
|
||||
}
|
||||
|
||||
for _, c := range config.Cutstrings {
|
||||
mu.Lock()
|
||||
reg, ok := cutstrings[c]
|
||||
llmbs.ftMutex.Lock()
|
||||
reg, ok := llmbs.cutstrings[c]
|
||||
if !ok {
|
||||
cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = cutstrings[c]
|
||||
llmbs.cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = llmbs.cutstrings[c]
|
||||
}
|
||||
mu.Unlock()
|
||||
llmbs.ftMutex.Unlock()
|
||||
prediction = reg.ReplaceAllString(prediction, "")
|
||||
}
|
||||
|
||||
|
@ -10,7 +10,7 @@ import (
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
if so.SingleBackend {
|
||||
opts = append(opts, model.WithSingleActiveBackend())
|
||||
}
|
||||
@ -19,12 +19,12 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
|
||||
opts = append(opts, model.EnableParallelRequests)
|
||||
}
|
||||
|
||||
if c.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
|
||||
if bc.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(bc.GRPC.Attempts))
|
||||
}
|
||||
|
||||
if c.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
|
||||
if bc.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(bc.GRPC.AttemptsSleepTime))
|
||||
}
|
||||
|
||||
for k, v := range so.ExternalGRPCBackends {
|
||||
@ -34,7 +34,7 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
|
||||
return opts
|
||||
}
|
||||
|
||||
func getSeed(c config.BackendConfig) int32 {
|
||||
func getSeed(c *config.BackendConfig) int32 {
|
||||
seed := int32(*c.Seed)
|
||||
if seed == config.RAND_SEED {
|
||||
seed = rand.Int31()
|
||||
@ -43,7 +43,7 @@ func getSeed(c config.BackendConfig) int32 {
|
||||
return seed
|
||||
}
|
||||
|
||||
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
|
||||
func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
|
||||
b := 512
|
||||
if c.Batch != 0 {
|
||||
b = c.Batch
|
||||
@ -104,47 +104,47 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
|
||||
}
|
||||
}
|
||||
|
||||
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
func gRPCPredictOpts(bc *config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
promptCachePath := ""
|
||||
if c.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, c.PromptCachePath)
|
||||
if bc.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, bc.PromptCachePath)
|
||||
os.MkdirAll(filepath.Dir(p), 0755)
|
||||
promptCachePath = p
|
||||
}
|
||||
|
||||
return &pb.PredictOptions{
|
||||
Temperature: float32(*c.Temperature),
|
||||
TopP: float32(*c.TopP),
|
||||
NDraft: c.NDraft,
|
||||
TopK: int32(*c.TopK),
|
||||
Tokens: int32(*c.Maxtokens),
|
||||
Threads: int32(*c.Threads),
|
||||
PromptCacheAll: c.PromptCacheAll,
|
||||
PromptCacheRO: c.PromptCacheRO,
|
||||
Temperature: float32(*bc.Temperature),
|
||||
TopP: float32(*bc.TopP),
|
||||
NDraft: bc.NDraft,
|
||||
TopK: int32(*bc.TopK),
|
||||
Tokens: int32(*bc.Maxtokens),
|
||||
Threads: int32(*bc.Threads),
|
||||
PromptCacheAll: bc.PromptCacheAll,
|
||||
PromptCacheRO: bc.PromptCacheRO,
|
||||
PromptCachePath: promptCachePath,
|
||||
F16KV: *c.F16,
|
||||
DebugMode: *c.Debug,
|
||||
Grammar: c.Grammar,
|
||||
NegativePromptScale: c.NegativePromptScale,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NegativePrompt: c.NegativePrompt,
|
||||
Mirostat: int32(*c.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*c.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
|
||||
Debug: *c.Debug,
|
||||
StopPrompts: c.StopWords,
|
||||
Repeat: int32(c.RepeatPenalty),
|
||||
NKeep: int32(c.Keep),
|
||||
Batch: int32(c.Batch),
|
||||
IgnoreEOS: c.IgnoreEOS,
|
||||
Seed: getSeed(c),
|
||||
FrequencyPenalty: float32(c.FrequencyPenalty),
|
||||
MLock: *c.MMlock,
|
||||
MMap: *c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
TensorSplit: c.TensorSplit,
|
||||
TailFreeSamplingZ: float32(*c.TFZ),
|
||||
TypicalP: float32(*c.TypicalP),
|
||||
F16KV: *bc.F16,
|
||||
DebugMode: *bc.Debug,
|
||||
Grammar: bc.Grammar,
|
||||
NegativePromptScale: bc.NegativePromptScale,
|
||||
RopeFreqBase: bc.RopeFreqBase,
|
||||
RopeFreqScale: bc.RopeFreqScale,
|
||||
NegativePrompt: bc.NegativePrompt,
|
||||
Mirostat: int32(*bc.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*bc.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*bc.LLMConfig.MirostatTAU),
|
||||
Debug: *bc.Debug,
|
||||
StopPrompts: bc.StopWords,
|
||||
Repeat: int32(bc.RepeatPenalty),
|
||||
NKeep: int32(bc.Keep),
|
||||
Batch: int32(bc.Batch),
|
||||
IgnoreEOS: bc.IgnoreEOS,
|
||||
Seed: getSeed(bc),
|
||||
FrequencyPenalty: float32(bc.FrequencyPenalty),
|
||||
MLock: *bc.MMlock,
|
||||
MMap: *bc.MMap,
|
||||
MainGPU: bc.MainGPU,
|
||||
TensorSplit: bc.TensorSplit,
|
||||
TailFreeSamplingZ: float32(*bc.TFZ),
|
||||
TypicalP: float32(*bc.TypicalP),
|
||||
}
|
||||
}
|
||||
|
@ -7,11 +7,48 @@ import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.Result, error) {
|
||||
type TranscriptionBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewTranscriptionBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TranscriptionBackendService {
|
||||
return &TranscriptionBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (tbs *TranscriptionBackendService) Transcribe(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.TranscriptionResult] {
|
||||
responseChannel := make(chan concurrency.ErrorOr[*schema.TranscriptionResult])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
bc, request, err := tbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, tbs.appConfig)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: fmt.Errorf("failed reading parameters from request:%w", err)}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
|
||||
tr, err := modelTranscription(request.File, request.Language, tbs.ml, bc, tbs.appConfig)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Value: tr}
|
||||
close(responseChannel)
|
||||
}(request)
|
||||
return responseChannel
|
||||
}
|
||||
|
||||
func modelTranscription(audio, language string, ml *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
|
||||
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(model.WhisperBackend),
|
||||
|
@ -7,29 +7,60 @@ import (
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
type TextToSpeechBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
func NewTextToSpeechBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TextToSpeechBackendService {
|
||||
return &TextToSpeechBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
|
||||
func (ttsbs *TextToSpeechBackendService) TextToAudioFile(request *schema.TTSRequest) <-chan concurrency.ErrorOr[*string] {
|
||||
responseChannel := make(chan concurrency.ErrorOr[*string])
|
||||
go func(request *schema.TTSRequest) {
|
||||
cfg, err := ttsbs.bcl.LoadBackendConfigFileByName(request.Model, ttsbs.appConfig.ModelPath,
|
||||
config.LoadOptionDebug(ttsbs.appConfig.Debug),
|
||||
config.LoadOptionThreads(ttsbs.appConfig.Threads),
|
||||
config.LoadOptionContextSize(ttsbs.appConfig.ContextSize),
|
||||
config.LoadOptionF16(ttsbs.appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
|
||||
if request.Backend != "" {
|
||||
cfg.Backend = request.Backend
|
||||
}
|
||||
|
||||
outFile, _, err := modelTTS(cfg.Backend, request.Input, cfg.Model, request.Voice, ttsbs.ml, ttsbs.appConfig, cfg)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Value: &outFile}
|
||||
close(responseChannel)
|
||||
}(request)
|
||||
return responseChannel
|
||||
}
|
||||
|
||||
func modelTTS(backend, text, modelFile string, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig *config.BackendConfig) (string, *proto.Result, error) {
|
||||
bb := backend
|
||||
if bb == "" {
|
||||
bb = model.PiperBackend
|
||||
@ -37,7 +68,7 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
|
||||
opts := modelOpts(&config.BackendConfig{}, appConfig, []model.Option{
|
||||
model.WithBackendString(bb),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(appConfig.Context),
|
||||
@ -87,3 +118,19 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
|
||||
|
||||
return filePath, res, err
|
||||
}
|
||||
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
}
|
||||
}
|
||||
|
@ -124,11 +124,11 @@ func (r *RunCMD) Run(ctx *Context) error {
|
||||
}
|
||||
|
||||
if r.PreloadBackendOnly {
|
||||
_, _, _, err := startup.Startup(opts...)
|
||||
_, err := startup.Startup(opts...)
|
||||
return err
|
||||
}
|
||||
|
||||
cl, ml, options, err := startup.Startup(opts...)
|
||||
application, err := startup.Startup(opts...)
|
||||
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed basic startup tasks with error %s", err.Error())
|
||||
@ -137,7 +137,7 @@ func (r *RunCMD) Run(ctx *Context) error {
|
||||
// Watch the configuration directory
|
||||
// If the directory does not exist, we don't watch it
|
||||
if _, err := os.Stat(r.LocalaiConfigDir); err == nil {
|
||||
closeConfigWatcherFn, err := startup.WatchConfigDirectory(r.LocalaiConfigDir, options)
|
||||
closeConfigWatcherFn, err := startup.WatchConfigDirectory(r.LocalaiConfigDir, application.ApplicationConfig)
|
||||
defer closeConfigWatcherFn()
|
||||
|
||||
if err != nil {
|
||||
@ -145,7 +145,7 @@ func (r *RunCMD) Run(ctx *Context) error {
|
||||
}
|
||||
}
|
||||
|
||||
appHTTP, err := http.App(cl, ml, options)
|
||||
appHTTP, err := http.App(application)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error during HTTP App construction")
|
||||
return err
|
||||
|
@ -7,6 +7,7 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
@ -43,11 +44,21 @@ func (t *TranscriptCMD) Run(ctx *Context) error {
|
||||
|
||||
defer ml.StopAllGRPC()
|
||||
|
||||
tr, err := backend.ModelTranscription(t.Filename, t.Language, ml, c, opts)
|
||||
if err != nil {
|
||||
return err
|
||||
tbs := backend.NewTranscriptionBackendService(ml, cl, opts)
|
||||
|
||||
resultChannel := tbs.Transcribe(&schema.OpenAIRequest{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Language: t.Language,
|
||||
},
|
||||
File: t.Filename,
|
||||
})
|
||||
|
||||
r := <-resultChannel
|
||||
|
||||
if r.Error != nil {
|
||||
return r.Error
|
||||
}
|
||||
for _, segment := range tr.Segments {
|
||||
for _, segment := range r.Value.Segments {
|
||||
fmt.Println(segment.Start.String(), "-", segment.Text)
|
||||
}
|
||||
return nil
|
||||
|
@ -9,6 +9,7 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
@ -42,20 +43,29 @@ func (t *TTSCMD) Run(ctx *Context) error {
|
||||
|
||||
defer ml.StopAllGRPC()
|
||||
|
||||
options := config.BackendConfig{}
|
||||
options.SetDefaults()
|
||||
ttsbs := backend.NewTextToSpeechBackendService(ml, config.NewBackendConfigLoader(), opts)
|
||||
|
||||
filePath, _, err := backend.ModelTTS(t.Backend, text, t.Model, t.Voice, ml, opts, options)
|
||||
if err != nil {
|
||||
return err
|
||||
request := &schema.TTSRequest{
|
||||
Model: t.Model,
|
||||
Input: text,
|
||||
Backend: t.Backend,
|
||||
Voice: t.Voice,
|
||||
}
|
||||
|
||||
resultsChannel := ttsbs.TextToAudioFile(request)
|
||||
|
||||
rawResult := <-resultsChannel
|
||||
|
||||
if rawResult.Error != nil {
|
||||
return rawResult.Error
|
||||
}
|
||||
if outputFile != "" {
|
||||
if err := os.Rename(filePath, outputFile); err != nil {
|
||||
if err := os.Rename(*rawResult.Value, outputFile); err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Printf("Generate file %s\n", outputFile)
|
||||
fmt.Printf("Generated file %q\n", outputFile)
|
||||
} else {
|
||||
fmt.Printf("Generate file %s\n", filePath)
|
||||
fmt.Printf("Generated file %q\n", *rawResult.Value)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
@ -1,22 +1,7 @@
|
||||
package config
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"sort"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v3"
|
||||
|
||||
"github.com/charmbracelet/glamour"
|
||||
)
|
||||
|
||||
const (
|
||||
@ -199,7 +184,7 @@ func (c *BackendConfig) FunctionToCall() string {
|
||||
}
|
||||
|
||||
func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
lo := &LoadOptions{}
|
||||
lo := &ConfigLoaderOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
ctx := lo.ctxSize
|
||||
@ -312,287 +297,3 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
cfg.Debug = &trueV
|
||||
}
|
||||
}
|
||||
|
||||
////// Config Loader ////////
|
||||
|
||||
type BackendConfigLoader struct {
|
||||
configs map[string]BackendConfig
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
type LoadOptions struct {
|
||||
debug bool
|
||||
threads, ctxSize int
|
||||
f16 bool
|
||||
}
|
||||
|
||||
func LoadOptionDebug(debug bool) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionThreads(threads int) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionF16(f16 bool) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
type ConfigLoaderOption func(*LoadOptions)
|
||||
|
||||
func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
|
||||
for _, l := range options {
|
||||
l(lo)
|
||||
}
|
||||
}
|
||||
|
||||
// Load a config file for a model
|
||||
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Try loading a model config file
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cl.LoadBackendConfig(
|
||||
modelConfig, opts...,
|
||||
); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg.SetDefaults(opts...)
|
||||
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func NewBackendConfigLoader() *BackendConfigLoader {
|
||||
return &BackendConfigLoader{
|
||||
configs: make(map[string]BackendConfig),
|
||||
}
|
||||
}
|
||||
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
lo := &LoadOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
cm.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
c, err := ReadBackendConfig(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
cl.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
v, exists := cl.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []BackendConfig
|
||||
for _, v := range cl.configs {
|
||||
res = append(res, v)
|
||||
}
|
||||
|
||||
sort.SliceStable(res, func(i, j int) bool {
|
||||
return res[i].Name < res[j].Name
|
||||
})
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []string
|
||||
for k := range cl.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (cl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
}
|
||||
|
||||
log.Info().Msgf("Preloading models from %s", modelPath)
|
||||
|
||||
renderMode := "dark"
|
||||
if os.Getenv("COLOR") != "" {
|
||||
renderMode = os.Getenv("COLOR")
|
||||
}
|
||||
|
||||
glamText := func(t string) {
|
||||
out, err := glamour.Render(t, renderMode)
|
||||
if err == nil && os.Getenv("NO_COLOR") == "" {
|
||||
fmt.Println(out)
|
||||
} else {
|
||||
fmt.Println(t)
|
||||
}
|
||||
}
|
||||
|
||||
for i, config := range cl.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
|
||||
|
||||
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
|
||||
return err
|
||||
}
|
||||
// Create file path
|
||||
filePath := filepath.Join(modelPath, file.Filename)
|
||||
|
||||
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
modelURL := config.PredictionOptions.Model
|
||||
modelURL = downloader.ConvertURL(modelURL)
|
||||
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(modelURL)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
cc := cl.configs[i]
|
||||
c := &cc
|
||||
c.PredictionOptions.Model = md5Name
|
||||
cl.configs[i] = *c
|
||||
}
|
||||
if cl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", cl.configs[i].Name))
|
||||
}
|
||||
if cl.configs[i].Description != "" {
|
||||
//glamText("**Description**")
|
||||
glamText(cl.configs[i].Description)
|
||||
}
|
||||
if cl.configs[i].Usage != "" {
|
||||
//glamText("**Usage**")
|
||||
glamText(cl.configs[i].Usage)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// LoadBackendConfigsFromPath reads all the configurations of the models from a path
|
||||
// (non-recursive)
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files := make([]fs.FileInfo, 0, len(entries))
|
||||
for _, entry := range entries {
|
||||
info, err := entry.Info()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files = append(files, info)
|
||||
}
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
|
||||
continue
|
||||
}
|
||||
c, err := ReadBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
if err == nil {
|
||||
cm.configs[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
509
core/config/backend_config_loader.go
Normal file
509
core/config/backend_config_loader.go
Normal file
@ -0,0 +1,509 @@
|
||||
package config
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"sort"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/charmbracelet/glamour"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v2"
|
||||
)
|
||||
|
||||
type BackendConfigLoader struct {
|
||||
configs map[string]BackendConfig
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
type ConfigLoaderOptions struct {
|
||||
debug bool
|
||||
threads, ctxSize int
|
||||
f16 bool
|
||||
}
|
||||
|
||||
func LoadOptionDebug(debug bool) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionThreads(threads int) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionF16(f16 bool) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
type ConfigLoaderOption func(*ConfigLoaderOptions)
|
||||
|
||||
func (lo *ConfigLoaderOptions) Apply(options ...ConfigLoaderOption) {
|
||||
for _, l := range options {
|
||||
l(lo)
|
||||
}
|
||||
}
|
||||
|
||||
func NewBackendConfigLoader() *BackendConfigLoader {
|
||||
return &BackendConfigLoader{
|
||||
configs: make(map[string]BackendConfig),
|
||||
}
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
c, err := readBackendConfig(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
bcl.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
v, exists := bcl.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
var res []BackendConfig
|
||||
for _, v := range bcl.configs {
|
||||
res = append(res, v)
|
||||
}
|
||||
sort.SliceStable(res, func(i, j int) bool {
|
||||
return res[i].Name < res[j].Name
|
||||
})
|
||||
return res
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
var res []string
|
||||
for k := range bcl.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (bcl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
}
|
||||
|
||||
log.Info().Msgf("Preloading models from %s", modelPath)
|
||||
|
||||
renderMode := "dark"
|
||||
if os.Getenv("COLOR") != "" {
|
||||
renderMode = os.Getenv("COLOR")
|
||||
}
|
||||
|
||||
glamText := func(t string) {
|
||||
out, err := glamour.Render(t, renderMode)
|
||||
if err == nil && os.Getenv("NO_COLOR") == "" {
|
||||
fmt.Println(out)
|
||||
} else {
|
||||
fmt.Println(t)
|
||||
}
|
||||
}
|
||||
|
||||
for i, config := range bcl.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
|
||||
|
||||
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
|
||||
return err
|
||||
}
|
||||
// Create file path
|
||||
filePath := filepath.Join(modelPath, file.Filename)
|
||||
|
||||
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
modelURL := config.PredictionOptions.Model
|
||||
modelURL = downloader.ConvertURL(modelURL)
|
||||
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(modelURL)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
cc := bcl.configs[i]
|
||||
c := &cc
|
||||
c.PredictionOptions.Model = md5Name
|
||||
bcl.configs[i] = *c
|
||||
}
|
||||
if bcl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", bcl.configs[i].Name))
|
||||
}
|
||||
if bcl.configs[i].Description != "" {
|
||||
//glamText("**Description**")
|
||||
glamText(bcl.configs[i].Description)
|
||||
}
|
||||
if bcl.configs[i].Usage != "" {
|
||||
//glamText("**Usage**")
|
||||
glamText(bcl.configs[i].Usage)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files := make([]fs.FileInfo, 0, len(entries))
|
||||
for _, entry := range entries {
|
||||
info, err := entry.Info()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files = append(files, info)
|
||||
}
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
|
||||
continue
|
||||
}
|
||||
c, err := readBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
if err == nil {
|
||||
bcl.configs[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
c, err := readBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
bcl.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
//////////
|
||||
|
||||
// Load a config file for a model
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigFileByName(modelName string, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := bcl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := bcl.LoadBackendConfig(modelConfig); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = bcl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg.SetDefaults(opts...)
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func readBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func readBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigForModelAndOpenAIRequest(modelFile string, input *schema.OpenAIRequest, appConfig *ApplicationConfig) (*BackendConfig, *schema.OpenAIRequest, error) {
|
||||
cfg, err := bcl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
LoadOptionContextSize(appConfig.ContextSize),
|
||||
LoadOptionDebug(appConfig.Debug),
|
||||
LoadOptionF16(appConfig.F16),
|
||||
LoadOptionThreads(appConfig.Threads),
|
||||
)
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateBackendConfigFromOpenAIRequest(cfg, input)
|
||||
|
||||
return cfg, input, err
|
||||
}
|
||||
|
||||
func updateBackendConfigFromOpenAIRequest(bc *BackendConfig, request *schema.OpenAIRequest) {
|
||||
if request.Echo {
|
||||
bc.Echo = request.Echo
|
||||
}
|
||||
if request.TopK != nil && *request.TopK != 0 {
|
||||
bc.TopK = request.TopK
|
||||
}
|
||||
if request.TopP != nil && *request.TopP != 0 {
|
||||
bc.TopP = request.TopP
|
||||
}
|
||||
|
||||
if request.Backend != "" {
|
||||
bc.Backend = request.Backend
|
||||
}
|
||||
|
||||
if request.ClipSkip != 0 {
|
||||
bc.Diffusers.ClipSkip = request.ClipSkip
|
||||
}
|
||||
|
||||
if request.ModelBaseName != "" {
|
||||
bc.AutoGPTQ.ModelBaseName = request.ModelBaseName
|
||||
}
|
||||
|
||||
if request.NegativePromptScale != 0 {
|
||||
bc.NegativePromptScale = request.NegativePromptScale
|
||||
}
|
||||
|
||||
if request.UseFastTokenizer {
|
||||
bc.UseFastTokenizer = request.UseFastTokenizer
|
||||
}
|
||||
|
||||
if request.NegativePrompt != "" {
|
||||
bc.NegativePrompt = request.NegativePrompt
|
||||
}
|
||||
|
||||
if request.RopeFreqBase != 0 {
|
||||
bc.RopeFreqBase = request.RopeFreqBase
|
||||
}
|
||||
|
||||
if request.RopeFreqScale != 0 {
|
||||
bc.RopeFreqScale = request.RopeFreqScale
|
||||
}
|
||||
|
||||
if request.Grammar != "" {
|
||||
bc.Grammar = request.Grammar
|
||||
}
|
||||
|
||||
if request.Temperature != nil && *request.Temperature != 0 {
|
||||
bc.Temperature = request.Temperature
|
||||
}
|
||||
|
||||
if request.Maxtokens != nil && *request.Maxtokens != 0 {
|
||||
bc.Maxtokens = request.Maxtokens
|
||||
}
|
||||
|
||||
switch stop := request.Stop.(type) {
|
||||
case string:
|
||||
if stop != "" {
|
||||
bc.StopWords = append(bc.StopWords, stop)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range stop {
|
||||
if s, ok := pp.(string); ok {
|
||||
bc.StopWords = append(bc.StopWords, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(request.Tools) > 0 {
|
||||
for _, tool := range request.Tools {
|
||||
request.Functions = append(request.Functions, tool.Function)
|
||||
}
|
||||
}
|
||||
|
||||
if request.ToolsChoice != nil {
|
||||
var toolChoice grammar.Tool
|
||||
switch content := request.ToolsChoice.(type) {
|
||||
case string:
|
||||
_ = json.Unmarshal([]byte(content), &toolChoice)
|
||||
case map[string]interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
_ = json.Unmarshal(dat, &toolChoice)
|
||||
}
|
||||
request.FunctionCall = map[string]interface{}{
|
||||
"name": toolChoice.Function.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Decode each request's message content
|
||||
index := 0
|
||||
for i, m := range request.Messages {
|
||||
switch content := m.Content.(type) {
|
||||
case string:
|
||||
request.Messages[i].StringContent = content
|
||||
case []interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
c := []schema.Content{}
|
||||
json.Unmarshal(dat, &c)
|
||||
for _, pp := range c {
|
||||
if pp.Type == "text" {
|
||||
request.Messages[i].StringContent = pp.Text
|
||||
} else if pp.Type == "image_url" {
|
||||
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
|
||||
base64, err := utils.GetImageURLAsBase64(pp.ImageURL.URL)
|
||||
if err == nil {
|
||||
request.Messages[i].StringImages = append(request.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
|
||||
// set a placeholder for each image
|
||||
request.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + request.Messages[i].StringContent
|
||||
index++
|
||||
} else {
|
||||
fmt.Print("Failed encoding image", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if request.RepeatPenalty != 0 {
|
||||
bc.RepeatPenalty = request.RepeatPenalty
|
||||
}
|
||||
|
||||
if request.FrequencyPenalty != 0 {
|
||||
bc.FrequencyPenalty = request.FrequencyPenalty
|
||||
}
|
||||
|
||||
if request.PresencePenalty != 0 {
|
||||
bc.PresencePenalty = request.PresencePenalty
|
||||
}
|
||||
|
||||
if request.Keep != 0 {
|
||||
bc.Keep = request.Keep
|
||||
}
|
||||
|
||||
if request.Batch != 0 {
|
||||
bc.Batch = request.Batch
|
||||
}
|
||||
|
||||
if request.IgnoreEOS {
|
||||
bc.IgnoreEOS = request.IgnoreEOS
|
||||
}
|
||||
|
||||
if request.Seed != nil {
|
||||
bc.Seed = request.Seed
|
||||
}
|
||||
|
||||
if request.TypicalP != nil {
|
||||
bc.TypicalP = request.TypicalP
|
||||
}
|
||||
|
||||
switch inputs := request.Input.(type) {
|
||||
case string:
|
||||
if inputs != "" {
|
||||
bc.InputStrings = append(bc.InputStrings, inputs)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range inputs {
|
||||
switch i := pp.(type) {
|
||||
case string:
|
||||
bc.InputStrings = append(bc.InputStrings, i)
|
||||
case []interface{}:
|
||||
tokens := []int{}
|
||||
for _, ii := range i {
|
||||
tokens = append(tokens, int(ii.(float64)))
|
||||
}
|
||||
bc.InputToken = append(bc.InputToken, tokens)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Can be either a string or an object
|
||||
switch fnc := request.FunctionCall.(type) {
|
||||
case string:
|
||||
if fnc != "" {
|
||||
bc.SetFunctionCallString(fnc)
|
||||
}
|
||||
case map[string]interface{}:
|
||||
var name string
|
||||
n, exists := fnc["name"]
|
||||
if exists {
|
||||
nn, e := n.(string)
|
||||
if e {
|
||||
name = nn
|
||||
}
|
||||
}
|
||||
bc.SetFunctionCallNameString(name)
|
||||
}
|
||||
|
||||
switch p := request.Prompt.(type) {
|
||||
case string:
|
||||
bc.PromptStrings = append(bc.PromptStrings, p)
|
||||
case []interface{}:
|
||||
for _, pp := range p {
|
||||
if s, ok := pp.(string); ok {
|
||||
bc.PromptStrings = append(bc.PromptStrings, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
6
core/config/exports_test.go
Normal file
6
core/config/exports_test.go
Normal file
@ -0,0 +1,6 @@
|
||||
package config
|
||||
|
||||
// This file re-exports private functions to be used directly in unit tests.
|
||||
// Since this file's name ends in _test.go, theoretically these should not be exposed past the tests.
|
||||
|
||||
var ReadBackendConfigFile = readBackendConfigFile
|
197
core/http/api.go
197
core/http/api.go
@ -1,23 +1,20 @@
|
||||
package http
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/gofiber/swagger" // swagger handler
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
@ -55,13 +52,12 @@ func readAuthHeader(c *fiber.Ctx) string {
|
||||
// @securityDefinitions.apikey BearerAuth
|
||||
// @in header
|
||||
// @name Authorization
|
||||
|
||||
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
|
||||
func App(application *core.Application) (*fiber.App, error) {
|
||||
// Return errors as JSON responses
|
||||
app := fiber.New(fiber.Config{
|
||||
Views: renderEngine(),
|
||||
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: appConfig.DisableMessage,
|
||||
BodyLimit: application.ApplicationConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: application.ApplicationConfig.DisableMessage,
|
||||
// Override default error handler
|
||||
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
||||
// Status code defaults to 500
|
||||
@ -82,7 +78,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
},
|
||||
})
|
||||
|
||||
if appConfig.Debug {
|
||||
if application.ApplicationConfig.Debug {
|
||||
app.Use(logger.New(logger.Config{
|
||||
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
|
||||
}))
|
||||
@ -90,7 +86,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
|
||||
// Default middleware config
|
||||
|
||||
if !appConfig.Debug {
|
||||
if !application.ApplicationConfig.Debug {
|
||||
app.Use(recover.New())
|
||||
}
|
||||
|
||||
@ -108,25 +104,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
|
||||
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
|
||||
auth := func(c *fiber.Ctx) error {
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
// Check for api_keys.json file
|
||||
fileContent, err := os.ReadFile("api_keys.json")
|
||||
if err == nil {
|
||||
// Parse JSON content from the file
|
||||
var fileKeys []string
|
||||
err := json.Unmarshal(fileContent, &fileKeys)
|
||||
if err != nil {
|
||||
return c.Status(fiber.StatusInternalServerError).JSON(fiber.Map{"message": "Error parsing api_keys.json"})
|
||||
}
|
||||
|
||||
// Add file keys to options.ApiKeys
|
||||
appConfig.ApiKeys = append(appConfig.ApiKeys, fileKeys...)
|
||||
}
|
||||
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
if len(application.ApplicationConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
@ -142,7 +120,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
}
|
||||
|
||||
apiKey := authHeaderParts[1]
|
||||
for _, key := range appConfig.ApiKeys {
|
||||
for _, key := range application.ApplicationConfig.ApiKeys {
|
||||
if apiKey == key {
|
||||
return c.Next()
|
||||
}
|
||||
@ -151,20 +129,22 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
|
||||
}
|
||||
|
||||
if appConfig.CORS {
|
||||
if application.ApplicationConfig.CORS {
|
||||
var c func(ctx *fiber.Ctx) error
|
||||
if appConfig.CORSAllowOrigins == "" {
|
||||
if application.ApplicationConfig.CORSAllowOrigins == "" {
|
||||
c = cors.New()
|
||||
} else {
|
||||
c = cors.New(cors.Config{AllowOrigins: appConfig.CORSAllowOrigins})
|
||||
c = cors.New(cors.Config{AllowOrigins: application.ApplicationConfig.CORSAllowOrigins})
|
||||
}
|
||||
|
||||
app.Use(c)
|
||||
}
|
||||
|
||||
fiberContextExtractor := fiberContext.NewFiberContextExtractor(application.ModelLoader, application.ApplicationConfig)
|
||||
|
||||
// LocalAI API endpoints
|
||||
galleryService := services.NewGalleryService(appConfig.ModelPath)
|
||||
galleryService.Start(appConfig.Context, cl)
|
||||
galleryService := services.NewGalleryService(application.ApplicationConfig.ModelPath)
|
||||
galleryService.Start(application.ApplicationConfig.Context, application.BackendConfigLoader)
|
||||
|
||||
app.Get("/version", auth, func(c *fiber.Ctx) error {
|
||||
return c.JSON(struct {
|
||||
@ -172,29 +152,17 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
}{Version: internal.PrintableVersion()})
|
||||
})
|
||||
|
||||
// Make sure directories exists
|
||||
os.MkdirAll(appConfig.ImageDir, 0755)
|
||||
os.MkdirAll(appConfig.AudioDir, 0755)
|
||||
os.MkdirAll(appConfig.UploadDir, 0755)
|
||||
os.MkdirAll(appConfig.ConfigsDir, 0755)
|
||||
os.MkdirAll(appConfig.ModelPath, 0755)
|
||||
|
||||
// Load config jsons
|
||||
utils.LoadConfig(appConfig.UploadDir, openai.UploadedFilesFile, &openai.UploadedFiles)
|
||||
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsConfigFile, &openai.Assistants)
|
||||
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsFileConfigFile, &openai.AssistantFiles)
|
||||
|
||||
app.Get("/swagger/*", swagger.HandlerDefault) // default
|
||||
|
||||
welcomeRoute(
|
||||
app,
|
||||
cl,
|
||||
ml,
|
||||
appConfig,
|
||||
application.BackendConfigLoader,
|
||||
application.ModelLoader,
|
||||
application.ApplicationConfig,
|
||||
auth,
|
||||
)
|
||||
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(application.ApplicationConfig.Galleries, application.ApplicationConfig.ModelPath, galleryService)
|
||||
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
|
||||
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
|
||||
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
|
||||
@ -203,83 +171,85 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
|
||||
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
|
||||
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Stores
|
||||
sl := model.NewModelLoader("")
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
|
||||
storeLoader := model.NewModelLoader("") // TODO: Investigate if this should be migrated to application and reused. Should the path be configurable? Merging for now.
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(storeLoader, application.ApplicationConfig))
|
||||
|
||||
// openAI compatible API endpoint
|
||||
// openAI compatible API endpoints
|
||||
|
||||
// chat
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// edit
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// assistant
|
||||
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
|
||||
// TODO: Refactor this to the new style eventually
|
||||
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
|
||||
// files
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
|
||||
// completion
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// embeddings
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
|
||||
// audio
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(fiberContextExtractor, application.TranscriptionBackendService))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
// images
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(fiberContextExtractor, application.ImageGenerationBackendService))
|
||||
|
||||
if appConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", appConfig.ImageDir)
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
// LocalAI TTS?
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
if application.ApplicationConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", application.ApplicationConfig.ImageDir)
|
||||
}
|
||||
|
||||
if appConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", appConfig.AudioDir)
|
||||
if application.ApplicationConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", application.ApplicationConfig.AudioDir)
|
||||
}
|
||||
|
||||
ok := func(c *fiber.Ctx) error {
|
||||
@ -291,13 +261,12 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
app.Get("/readyz", ok)
|
||||
|
||||
// Experimental Backend Statistics Module
|
||||
backendMonitor := services.NewBackendMonitor(cl, ml, appConfig) // Split out for now
|
||||
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(backendMonitor))
|
||||
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(backendMonitor))
|
||||
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(application.BackendMonitorService))
|
||||
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(application.BackendMonitorService))
|
||||
|
||||
// models
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
|
||||
|
||||
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())
|
||||
|
||||
|
@ -12,7 +12,9 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
. "github.com/go-skynet/LocalAI/core/http"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
@ -205,9 +207,7 @@ var _ = Describe("API test", func() {
|
||||
var cancel context.CancelFunc
|
||||
var tmpdir string
|
||||
var modelDir string
|
||||
var bcl *config.BackendConfigLoader
|
||||
var ml *model.ModelLoader
|
||||
var applicationConfig *config.ApplicationConfig
|
||||
var application *core.Application
|
||||
|
||||
commonOpts := []config.AppOption{
|
||||
config.WithDebug(true),
|
||||
@ -252,7 +252,7 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithGalleries(galleries),
|
||||
@ -261,7 +261,7 @@ var _ = Describe("API test", func() {
|
||||
config.WithBackendAssetsOutput(backendAssetsDir))...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@ -474,11 +474,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp2.Choices)).To(Equal(1))
|
||||
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
|
||||
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
@ -487,9 +487,9 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("runs openllama gguf(llama-cpp)", Label("llama-gguf"), func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
modelName := "codellama"
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "github:go-skynet/model-gallery/codellama-7b-instruct.yaml",
|
||||
@ -504,7 +504,7 @@ var _ = Describe("API test", func() {
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
return response["processed"].(bool)
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
}, "480s", "10s").Should(Equal(true))
|
||||
|
||||
By("testing chat")
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: modelName, Messages: []openai.ChatCompletionMessage{
|
||||
@ -551,11 +551,13 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp2.Choices)).To(Equal(1))
|
||||
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
||||
fmt.Printf("\n--- %+v\n\n", resp2.Choices[0].Message)
|
||||
Expect(resp2.Choices[0].Message.ToolCalls).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0]).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
|
||||
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
@ -609,7 +611,7 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithAudioDir(tmpdir),
|
||||
@ -620,7 +622,7 @@ var _ = Describe("API test", func() {
|
||||
config.WithBackendAssetsOutput(tmpdir))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@ -724,14 +726,14 @@ var _ = Describe("API test", func() {
|
||||
|
||||
var err error
|
||||
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
)...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
@ -761,6 +763,11 @@ var _ = Describe("API test", func() {
|
||||
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
|
||||
})
|
||||
It("can generate completions via ggml", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@ -768,6 +775,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate chat completions via ggml", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@ -775,6 +787,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate completions from model configs", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@ -782,6 +799,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate chat completions from model configs", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@ -868,9 +890,9 @@ var _ = Describe("API test", func() {
|
||||
|
||||
Context("backends", func() {
|
||||
It("runs rwkv completion", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices) > 0).To(BeTrue())
|
||||
@ -891,17 +913,20 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
if len(response.Choices) > 0 {
|
||||
text += response.Choices[0].Text
|
||||
tokens++
|
||||
}
|
||||
}
|
||||
Expect(text).ToNot(BeEmpty())
|
||||
Expect(text).To(ContainSubstring("five"))
|
||||
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
|
||||
})
|
||||
It("runs rwkv chat completion", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
resp, err := client.CreateChatCompletion(context.TODO(),
|
||||
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
@ -1010,14 +1035,14 @@ var _ = Describe("API test", func() {
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
var err error
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@ -1041,18 +1066,33 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
})
|
||||
It("can generate chat completions from config file (list1)", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate chat completions from config file (list2)", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate edit completions from config file", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
request := openaigo.EditCreateRequestBody{
|
||||
Model: "list2",
|
||||
Instruction: "foo",
|
||||
|
@ -1,43 +1,88 @@
|
||||
package fiberContext
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type FiberContextExtractor struct {
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewFiberContextExtractor(ml *model.ModelLoader, appConfig *config.ApplicationConfig) *FiberContextExtractor {
|
||||
return &FiberContextExtractor{
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
// ModelFromContext returns the model from the context
|
||||
// If no model is specified, it will take the first available
|
||||
// Takes a model string as input which should be the one received from the user request.
|
||||
// It returns the model name resolved from the context and an error if any.
|
||||
func ModelFromContext(ctx *fiber.Ctx, loader *model.ModelLoader, modelInput string, firstModel bool) (string, error) {
|
||||
if ctx.Params("model") != "" {
|
||||
modelInput = ctx.Params("model")
|
||||
func (fce *FiberContextExtractor) ModelFromContext(ctx *fiber.Ctx, modelInput string, firstModel bool) (string, error) {
|
||||
ctxPM := ctx.Params("model")
|
||||
if ctxPM != "" {
|
||||
log.Debug().Msgf("[FCE] Overriding param modelInput %q with ctx.Params value %q", modelInput, ctxPM)
|
||||
modelInput = ctxPM
|
||||
}
|
||||
|
||||
// Set model from bearer token, if available
|
||||
bearer := strings.TrimLeft(ctx.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
||||
bearer := strings.TrimPrefix(ctx.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && fce.ml.ExistsInModelPath(bearer)
|
||||
|
||||
// If no model was specified, take the first available
|
||||
if modelInput == "" && !bearerExists && firstModel {
|
||||
models, _ := loader.ListModels()
|
||||
models, _ := fce.ml.ListModels()
|
||||
if len(models) > 0 {
|
||||
modelInput = models[0]
|
||||
log.Debug().Msgf("No model specified, using: %s", modelInput)
|
||||
log.Debug().Msgf("[FCE] No model specified, using first available: %s", modelInput)
|
||||
} else {
|
||||
log.Debug().Msgf("No model specified, returning error")
|
||||
return "", fmt.Errorf("no model specified")
|
||||
log.Warn().Msgf("[FCE] No model specified, none available")
|
||||
return "", fmt.Errorf("[fce] no model specified, none available")
|
||||
}
|
||||
}
|
||||
|
||||
// If a model is found in bearer token takes precedence
|
||||
if bearerExists {
|
||||
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
||||
log.Debug().Msgf("[FCE] Using model from bearer token: %s", bearer)
|
||||
modelInput = bearer
|
||||
}
|
||||
|
||||
if modelInput == "" {
|
||||
log.Warn().Msg("[FCE] modelInput is empty")
|
||||
}
|
||||
return modelInput, nil
|
||||
}
|
||||
|
||||
// TODO: Do we still need the first return value?
|
||||
func (fce *FiberContextExtractor) OpenAIRequestFromContext(c *fiber.Ctx, firstModel bool) (string, *schema.OpenAIRequest, error) {
|
||||
input := new(schema.OpenAIRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
|
||||
}
|
||||
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
ctx, cancel := context.WithCancel(fce.appConfig.Context)
|
||||
input.Context = ctx
|
||||
input.Cancel = cancel
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
var err error
|
||||
input.Model, err = fce.ModelFromContext(c, input.Model, firstModel)
|
||||
|
||||
return input.Model, input, err
|
||||
}
|
||||
|
@ -2,9 +2,7 @@ package elevenlabs
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@ -17,7 +15,7 @@ import (
|
||||
// @Param request body schema.TTSRequest true "query params"
|
||||
// @Success 200 {string} binary "Response"
|
||||
// @Router /v1/text-to-speech/{voice-id} [post]
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.ElevenLabsTTSRequest)
|
||||
@ -28,34 +26,21 @@ func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfi
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.ModelID, false)
|
||||
var err error
|
||||
input.ModelID, err = fce.ModelFromContext(c, input.ModelID, false)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
}
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
} else {
|
||||
if input.ModelID != "" {
|
||||
modelFile = input.ModelID
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
}
|
||||
}
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Text, modelFile, voiceID, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
responseChannel := ttsbs.TextToAudioFile(&schema.TTSRequest{
|
||||
Model: input.ModelID,
|
||||
Voice: voiceID,
|
||||
Input: input.Text,
|
||||
})
|
||||
rawValue := <-responseChannel
|
||||
if rawValue.Error != nil {
|
||||
return rawValue.Error
|
||||
}
|
||||
return c.Download(*rawValue.Value)
|
||||
}
|
||||
}
|
||||
|
@ -6,7 +6,7 @@ import (
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
|
||||
func BackendMonitorEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.BackendMonitorRequest)
|
||||
@ -23,7 +23,7 @@ func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error
|
||||
}
|
||||
}
|
||||
|
||||
func BackendShutdownEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
|
||||
func BackendShutdownEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.BackendMonitorRequest)
|
||||
// Get input data from the request body
|
||||
|
@ -2,9 +2,7 @@ package localai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@ -16,45 +14,26 @@ import (
|
||||
// @Param request body schema.TTSRequest true "query params"
|
||||
// @Success 200 {string} binary "Response"
|
||||
// @Router /v1/audio/speech [post]
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
var err error
|
||||
input := new(schema.TTSRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
if err = c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
|
||||
input.Model, err = fce.ModelFromContext(c, input.Model, false)
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
}
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
responseChannel := ttsbs.TextToAudioFile(input)
|
||||
rawValue := <-responseChannel
|
||||
if rawValue.Error != nil {
|
||||
return rawValue.Error
|
||||
}
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
if input.Backend != "" {
|
||||
cfg.Backend = input.Backend
|
||||
}
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, input.Voice, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
return c.Download(*rawValue.Value)
|
||||
}
|
||||
}
|
||||
|
@ -339,7 +339,7 @@ func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.Model
|
||||
}
|
||||
}
|
||||
|
||||
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find "))
|
||||
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistantID %q", assistantID))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,17 +5,11 @@ import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
@ -25,412 +19,82 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/chat/completions [post]
|
||||
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
emptyMessage := ""
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
result := ""
|
||||
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
result += s
|
||||
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
||||
// stream the result token by token here.
|
||||
return true
|
||||
})
|
||||
|
||||
results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls)
|
||||
noActionToRun := len(results) > 0 && results[0].name == noAction
|
||||
|
||||
switch {
|
||||
case noActionToRun:
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error handling question")
|
||||
return
|
||||
}
|
||||
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
|
||||
default:
|
||||
for i, ss := range results {
|
||||
name, args := ss.name, ss.arguments
|
||||
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
responses <- schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
close(responses)
|
||||
}
|
||||
|
||||
func ChatEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
processFunctions := false
|
||||
funcs := grammar.Functions{}
|
||||
modelFile, input, err := readRequest(c, ml, startupOptions, true)
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request: %w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
|
||||
traceID, finalResultChannel, _, tokenChannel, err := oais.Chat(request, false, request.Stream)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
log.Debug().Msgf("Configuration read: %+v", config)
|
||||
|
||||
// Allow the user to set custom actions via config file
|
||||
// to be "embedded" in each model
|
||||
noActionName := "answer"
|
||||
noActionDescription := "use this action to answer without performing any action"
|
||||
|
||||
if config.FunctionsConfig.NoActionFunctionName != "" {
|
||||
noActionName = config.FunctionsConfig.NoActionFunctionName
|
||||
}
|
||||
if config.FunctionsConfig.NoActionDescriptionName != "" {
|
||||
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
|
||||
return err
|
||||
}
|
||||
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = grammar.JSONBNF
|
||||
}
|
||||
if request.Stream {
|
||||
|
||||
config.Grammar = input.Grammar
|
||||
log.Debug().Msgf("Chat Stream request received")
|
||||
|
||||
// process functions if we have any defined or if we have a function call string
|
||||
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
|
||||
log.Debug().Msgf("Response needs to process functions")
|
||||
|
||||
processFunctions = true
|
||||
|
||||
noActionGrammar := grammar.Function{
|
||||
Name: noActionName,
|
||||
Description: noActionDescription,
|
||||
Parameters: map[string]interface{}{
|
||||
"properties": map[string]interface{}{
|
||||
"message": map[string]interface{}{
|
||||
"type": "string",
|
||||
"description": "The message to reply the user with",
|
||||
}},
|
||||
},
|
||||
}
|
||||
|
||||
// Append the no action function
|
||||
funcs = append(funcs, input.Functions...)
|
||||
if !config.FunctionsConfig.DisableNoAction {
|
||||
funcs = append(funcs, noActionGrammar)
|
||||
}
|
||||
|
||||
// Force picking one of the functions by the request
|
||||
if config.FunctionToCall() != "" {
|
||||
funcs = funcs.Select(config.FunctionToCall())
|
||||
}
|
||||
|
||||
// Update input grammar
|
||||
jsStruct := funcs.ToJSONStructure()
|
||||
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
|
||||
} else if input.JSONFunctionGrammarObject != nil {
|
||||
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
|
||||
}
|
||||
|
||||
// functions are not supported in stream mode (yet?)
|
||||
toStream := input.Stream
|
||||
|
||||
log.Debug().Msgf("Parameters: %+v", config)
|
||||
|
||||
var predInput string
|
||||
|
||||
// If we are using the tokenizer template, we don't need to process the messages
|
||||
// unless we are processing functions
|
||||
if !config.TemplateConfig.UseTokenizerTemplate || processFunctions {
|
||||
|
||||
suppressConfigSystemPrompt := false
|
||||
mess := []string{}
|
||||
for messageIndex, i := range input.Messages {
|
||||
var content string
|
||||
role := i.Role
|
||||
|
||||
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
|
||||
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
|
||||
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
|
||||
roleFn := "assistant_function_call"
|
||||
r := config.Roles[roleFn]
|
||||
if r != "" {
|
||||
role = roleFn
|
||||
}
|
||||
}
|
||||
r := config.Roles[role]
|
||||
contentExists := i.Content != nil && i.StringContent != ""
|
||||
|
||||
fcall := i.FunctionCall
|
||||
if len(i.ToolCalls) > 0 {
|
||||
fcall = i.ToolCalls
|
||||
}
|
||||
|
||||
// First attempt to populate content via a chat message specific template
|
||||
if config.TemplateConfig.ChatMessage != "" {
|
||||
chatMessageData := model.ChatMessageTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
FunctionCall: fcall,
|
||||
FunctionName: i.Name,
|
||||
LastMessage: messageIndex == (len(input.Messages) - 1),
|
||||
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
|
||||
} else {
|
||||
if templatedChatMessage == "" {
|
||||
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
|
||||
}
|
||||
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
|
||||
content = templatedChatMessage
|
||||
}
|
||||
}
|
||||
|
||||
marshalAnyRole := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + fmt.Sprint(r, " ", string(j))
|
||||
} else {
|
||||
content = fmt.Sprint(r, " ", string(j))
|
||||
}
|
||||
}
|
||||
}
|
||||
marshalAny := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + string(j)
|
||||
} else {
|
||||
content = string(j)
|
||||
}
|
||||
}
|
||||
}
|
||||
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
|
||||
if content == "" {
|
||||
if r != "" {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(r, i.StringContent)
|
||||
}
|
||||
|
||||
if i.FunctionCall != nil {
|
||||
marshalAnyRole(i.FunctionCall)
|
||||
}
|
||||
if i.ToolCalls != nil {
|
||||
marshalAnyRole(i.ToolCalls)
|
||||
}
|
||||
} else {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(i.StringContent)
|
||||
}
|
||||
if i.FunctionCall != nil {
|
||||
marshalAny(i.FunctionCall)
|
||||
}
|
||||
if i.ToolCalls != nil {
|
||||
marshalAny(i.ToolCalls)
|
||||
}
|
||||
}
|
||||
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
|
||||
if contentExists && role == "system" {
|
||||
suppressConfigSystemPrompt = true
|
||||
}
|
||||
}
|
||||
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
log.Debug().Msgf("Prompt (before templating): %s", predInput)
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Chat != "" && !processFunctions {
|
||||
templateFile = config.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Functions != "" && processFunctions {
|
||||
templateFile = config.TemplateConfig.Functions
|
||||
}
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
||||
Input: predInput,
|
||||
Functions: funcs,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
} else {
|
||||
log.Debug().Msgf("Template failed loading: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
||||
if processFunctions {
|
||||
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
||||
}
|
||||
}
|
||||
|
||||
switch {
|
||||
case toStream:
|
||||
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
// c.Set("Content-Type", "text/event-stream")
|
||||
//
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
if !processFunctions {
|
||||
go process(predInput, input, config, ml, responses)
|
||||
} else {
|
||||
go processTools(noActionName, predInput, input, config, ml, responses)
|
||||
}
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
usage := &schema.OpenAIUsage{}
|
||||
toolsCalled := false
|
||||
for ev := range responses {
|
||||
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
|
||||
for ev := range tokenChannel {
|
||||
if ev.Error != nil {
|
||||
log.Debug().Err(ev.Error).Msg("chat streaming responseChannel error")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
usage = &ev.Value.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
|
||||
if len(ev.Value.Choices[0].Delta.ToolCalls) > 0 {
|
||||
toolsCalled = true
|
||||
}
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
enc.Encode(ev)
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
if ev.Error != nil {
|
||||
log.Debug().Err(ev.Error).Msg("[ChatEndpoint] error to debug during tokenChannel handler")
|
||||
enc.Encode(ev.Error)
|
||||
} else {
|
||||
enc.Encode(ev.Value)
|
||||
}
|
||||
log.Debug().Msgf("chat streaming sending chunk: %s", buf.String())
|
||||
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
if err != nil {
|
||||
log.Debug().Msgf("Sending chunk failed: %v", err)
|
||||
input.Cancel()
|
||||
log.Debug().Err(err).Msgf("Sending chunk failed")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
err = w.Flush()
|
||||
if err != nil {
|
||||
log.Debug().Msg("error while flushing, closing connection")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
finishReason := "stop"
|
||||
if toolsCalled {
|
||||
finishReason = "tool_calls"
|
||||
} else if toolsCalled && len(input.Tools) == 0 {
|
||||
} else if toolsCalled && len(request.Tools) == 0 {
|
||||
finishReason = "function_call"
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
FinishReason: finishReason,
|
||||
Index: 0,
|
||||
Delta: &schema.Message{Content: &emptyMessage},
|
||||
Delta: &schema.Message{Content: ""},
|
||||
}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: *usage,
|
||||
@ -441,202 +105,21 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
|
||||
w.WriteString("data: [DONE]\n\n")
|
||||
w.Flush()
|
||||
}))
|
||||
|
||||
return nil
|
||||
|
||||
// no streaming mode
|
||||
default:
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
if !processFunctions {
|
||||
// no function is called, just reply and use stop as finish reason
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
return
|
||||
}
|
||||
|
||||
results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls)
|
||||
noActionsToRun := len(results) > 0 && results[0].name == noActionName
|
||||
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
|
||||
rawResponse := <-finalResultChannel
|
||||
|
||||
switch {
|
||||
case noActionsToRun:
|
||||
result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error handling question")
|
||||
return
|
||||
}
|
||||
*c = append(*c, schema.Choice{
|
||||
Message: &schema.Message{Role: "assistant", Content: &result}})
|
||||
default:
|
||||
toolChoice := schema.Choice{
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
},
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
toolChoice.FinishReason = "tool_calls"
|
||||
}
|
||||
|
||||
for _, ss := range results {
|
||||
name, args := ss.name, ss.arguments
|
||||
if len(input.Tools) > 0 {
|
||||
// If we are using tools, we condense the function calls into
|
||||
// a single response choice with all the tools
|
||||
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
|
||||
schema.ToolCall{
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
)
|
||||
} else {
|
||||
// otherwise we return more choices directly
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
FunctionCall: map[string]interface{}{
|
||||
"name": name,
|
||||
"arguments": args,
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
// we need to append our result if we are using tools
|
||||
*c = append(*c, toolChoice)
|
||||
}
|
||||
}
|
||||
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", respData)
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Str("jsonResult", string(jsonResult)).Msg("Chat Final Response")
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
||||
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, args, prompt string) (string, error) {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
json.Unmarshal([]byte(args), &arguments)
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = backend.Finetune(*config, prompt, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
return message, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU/GPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, ml, *config, o, nil)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("model inference failed")
|
||||
return "", err
|
||||
}
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("prediction failed")
|
||||
return "", err
|
||||
}
|
||||
return backend.Finetune(*config, prompt, prediction.Response), nil
|
||||
}
|
||||
|
||||
type funcCallResults struct {
|
||||
name string
|
||||
arguments string
|
||||
}
|
||||
|
||||
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
|
||||
results := []funcCallResults{}
|
||||
|
||||
// TODO: use generics to avoid this code duplication
|
||||
if multipleResults {
|
||||
ss := []map[string]interface{}{}
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
for _, s := range ss {
|
||||
func_name, ok := s["function"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
args, ok := s["arguments"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
} else {
|
||||
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
|
||||
ss := map[string]interface{}{}
|
||||
// This prevent newlines to break JSON parsing for clients
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name, ok := ss["function"]
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
|
||||
return results
|
||||
}
|
||||
|
@ -4,18 +4,13 @@ import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
@ -25,116 +20,50 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/completions [post]
|
||||
func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Index: 0,
|
||||
Text: s,
|
||||
},
|
||||
},
|
||||
Object: "text_completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
log.Debug().Msgf("Sending goroutine: %s", s)
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
|
||||
func CompletionEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
modelFile, input, err := readRequest(c, ml, appConfig, true)
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("`input`: %+v", input)
|
||||
log.Debug().Msgf("`OpenAIRequest`: %+v", request)
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
traceID, finalResultChannel, _, _, tokenChannel, err := oais.Completion(request, false, request.Stream)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
return err
|
||||
}
|
||||
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = grammar.JSONBNF
|
||||
}
|
||||
if request.Stream {
|
||||
log.Debug().Msgf("Completion Stream request received")
|
||||
|
||||
config.Grammar = input.Grammar
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
if input.Stream {
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
//c.Set("Content-Type", "text/event-stream")
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
}
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Completion != "" {
|
||||
templateFile = config.TemplateConfig.Completion
|
||||
}
|
||||
|
||||
if input.Stream {
|
||||
if len(config.PromptStrings) > 1 {
|
||||
return errors.New("cannot handle more than 1 `PromptStrings` when Streaming")
|
||||
}
|
||||
|
||||
predInput := config.PromptStrings[0]
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
Input: predInput,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
}
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
go process(predInput, input, config, ml, responses)
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
|
||||
for ev := range responses {
|
||||
for ev := range tokenChannel {
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
enc.Encode(ev)
|
||||
if ev.Error != nil {
|
||||
log.Debug().Msgf("[CompletionEndpoint] error to debug during tokenChannel handler: %q", ev.Error)
|
||||
enc.Encode(ev.Error)
|
||||
} else {
|
||||
enc.Encode(ev.Value)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
log.Debug().Msgf("completion streaming sending chunk: %s", buf.String())
|
||||
fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Index: 0,
|
||||
@ -151,55 +80,15 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
|
||||
}))
|
||||
return nil
|
||||
}
|
||||
|
||||
var result []schema.Choice
|
||||
|
||||
totalTokenUsage := backend.TokenUsage{}
|
||||
|
||||
for k, i := range config.PromptStrings {
|
||||
if templateFile != "" {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Input: i,
|
||||
})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
|
||||
rawResponse := <-finalResultChannel
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(
|
||||
input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s, FinishReason: "stop", Index: k})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
totalTokenUsage.Prompt += tokenUsage.Prompt
|
||||
totalTokenUsage.Completion += tokenUsage.Completion
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "text_completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: totalTokenUsage.Prompt,
|
||||
CompletionTokens: totalTokenUsage.Completion,
|
||||
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
@ -3,92 +3,36 @@ package openai
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func EditEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
modelFile, input, err := readRequest(c, ml, appConfig, true)
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Edit != "" {
|
||||
templateFile = config.TemplateConfig.Edit
|
||||
}
|
||||
|
||||
var result []schema.Choice
|
||||
totalTokenUsage := backend.TokenUsage{}
|
||||
|
||||
for _, i := range config.InputStrings {
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
Input: i,
|
||||
Instruction: input.Instruction,
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s})
|
||||
}, nil)
|
||||
_, finalResultChannel, _, _, _, err := oais.Edit(request, false, request.Stream)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
totalTokenUsage.Prompt += tokenUsage.Prompt
|
||||
totalTokenUsage.Completion += tokenUsage.Completion
|
||||
|
||||
result = append(result, r...)
|
||||
rawResponse := <-finalResultChannel
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "edit",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: totalTokenUsage.Prompt,
|
||||
CompletionTokens: totalTokenUsage.Completion,
|
||||
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
@ -3,14 +3,9 @@ package openai
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
@ -21,63 +16,25 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/embeddings [post]
|
||||
func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func EmbeddingsEndpoint(fce *fiberContext.FiberContextExtractor, ebs *backend.EmbeddingsBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
model, input, err := readRequest(c, ml, appConfig, true)
|
||||
_, input, err := fce.OpenAIRequestFromContext(c, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(model, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
responseChannel := ebs.Embeddings(input)
|
||||
|
||||
rawResponse := <-responseChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
items := []schema.Item{}
|
||||
|
||||
for i, s := range config.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := backend.ModelEmbedding("", s, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range config.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := backend.ModelEmbedding(s, []int{}, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
@ -1,50 +1,18 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func downloadFile(url string) (string, error) {
|
||||
// Get the data
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Create the file
|
||||
out, err := os.CreateTemp("", "image")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
// Write the body to file
|
||||
_, err = io.Copy(out, resp.Body)
|
||||
return out.Name(), err
|
||||
}
|
||||
|
||||
//
|
||||
// https://platform.openai.com/docs/api-reference/images/create
|
||||
|
||||
/*
|
||||
*
|
||||
@ -59,186 +27,36 @@ func downloadFile(url string) (string, error) {
|
||||
|
||||
*
|
||||
*/
|
||||
|
||||
// ImageEndpoint is the OpenAI Image generation API endpoint https://platform.openai.com/docs/api-reference/images/create
|
||||
// @Summary Creates an image given a prompt.
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/images/generations [post]
|
||||
func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func ImageEndpoint(fce *fiberContext.FiberContextExtractor, igbs *backend.ImageGenerationBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
m, input, err := readRequest(c, ml, appConfig, false)
|
||||
// TODO: Somewhat a hack. Is there a better place to assign this?
|
||||
if igbs.BaseUrlForGeneratedImages == "" {
|
||||
igbs.BaseUrlForGeneratedImages = c.BaseURL() + "/generated-images/"
|
||||
}
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
if m == "" {
|
||||
m = model.StableDiffusionBackend
|
||||
}
|
||||
log.Debug().Msgf("Loading model: %+v", m)
|
||||
responseChannel := igbs.GenerateImage(request)
|
||||
rawResponse := <-responseChannel
|
||||
|
||||
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, 0, 0, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
|
||||
src := ""
|
||||
if input.File != "" {
|
||||
|
||||
fileData := []byte{}
|
||||
// check if input.File is an URL, if so download it and save it
|
||||
// to a temporary file
|
||||
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
|
||||
out, err := downloadFile(input.File)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed downloading file:%w", err)
|
||||
}
|
||||
defer os.RemoveAll(out)
|
||||
|
||||
fileData, err = os.ReadFile(out)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading file:%w", err)
|
||||
}
|
||||
|
||||
} else {
|
||||
// base 64 decode the file and write it somewhere
|
||||
// that we will cleanup
|
||||
fileData, err = base64.StdEncoding.DecodeString(input.File)
|
||||
jsonResult, err := json.Marshal(rawResponse.Value)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(appConfig.ImageDir, "b64")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
// write the base64 result
|
||||
writer := bufio.NewWriter(outputFile)
|
||||
_, err = writer.Write(fileData)
|
||||
if err != nil {
|
||||
outputFile.Close()
|
||||
return err
|
||||
}
|
||||
outputFile.Close()
|
||||
src = outputFile.Name()
|
||||
defer os.RemoveAll(src)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
switch config.Backend {
|
||||
case "stablediffusion":
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
case "tinydream":
|
||||
config.Backend = model.TinyDreamBackend
|
||||
case "":
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(input.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
return fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
return fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
return fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if input.ResponseFormat.Type == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
// src and clip_skip
|
||||
var result []schema.Item
|
||||
for _, i := range config.PromptStrings {
|
||||
n := input.N
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := config.Step
|
||||
if step == 0 {
|
||||
step = 15
|
||||
}
|
||||
|
||||
if input.Mode != 0 {
|
||||
mode = input.Mode
|
||||
}
|
||||
|
||||
if input.Step != 0 {
|
||||
step = input.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = appConfig.ImageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(tempDir, "b64")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
baseURL := c.BaseURL()
|
||||
|
||||
fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, src, output, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
item := &schema.Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = baseURL + "/generated-images/" + base
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Data: result,
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
@ -1,55 +0,0 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ComputeChoices(
|
||||
req *schema.OpenAIRequest,
|
||||
predInput string,
|
||||
config *config.BackendConfig,
|
||||
o *config.ApplicationConfig,
|
||||
loader *model.ModelLoader,
|
||||
cb func(string, *[]schema.Choice),
|
||||
tokenCallback func(string, backend.TokenUsage) bool) ([]schema.Choice, backend.TokenUsage, error) {
|
||||
n := req.N // number of completions to return
|
||||
result := []schema.Choice{}
|
||||
|
||||
if n == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
images := []string{}
|
||||
for _, m := range req.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
// get the model function to call for the result
|
||||
predFunc, err := backend.ModelInference(req.Context, predInput, req.Messages, images, loader, *config, o, tokenCallback)
|
||||
if err != nil {
|
||||
return result, backend.TokenUsage{}, err
|
||||
}
|
||||
|
||||
tokenUsage := backend.TokenUsage{}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return result, backend.TokenUsage{}, err
|
||||
}
|
||||
|
||||
tokenUsage.Prompt += prediction.Usage.Prompt
|
||||
tokenUsage.Completion += prediction.Usage.Completion
|
||||
|
||||
finetunedResponse := backend.Finetune(*config, predInput, prediction.Response)
|
||||
cb(finetunedResponse, &result)
|
||||
|
||||
//result = append(result, Choice{Text: prediction})
|
||||
|
||||
}
|
||||
return result, tokenUsage, err
|
||||
}
|
@ -1,61 +1,21 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"regexp"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func ListModelsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader) func(ctx *fiber.Ctx) error {
|
||||
func ListModelsEndpoint(lms *services.ListModelsService) func(ctx *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
models, err := ml.ListModels()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
var mm map[string]interface{} = map[string]interface{}{}
|
||||
|
||||
dataModels := []schema.OpenAIModel{}
|
||||
|
||||
var filterFn func(name string) bool
|
||||
// If blank, no filter is applied.
|
||||
filter := c.Query("filter")
|
||||
|
||||
// If filter is not specified, do not filter the list by model name
|
||||
if filter == "" {
|
||||
filterFn = func(_ string) bool { return true }
|
||||
} else {
|
||||
// If filter _IS_ specified, we compile it to a regex which is used to create the filterFn
|
||||
rxp, err := regexp.Compile(filter)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
filterFn = func(name string) bool {
|
||||
return rxp.MatchString(name)
|
||||
}
|
||||
}
|
||||
|
||||
// By default, exclude any loose files that are already referenced by a configuration file.
|
||||
excludeConfigured := c.QueryBool("excludeConfigured", true)
|
||||
|
||||
// Start with the known configurations
|
||||
for _, c := range cl.GetAllBackendConfigs() {
|
||||
if excludeConfigured {
|
||||
mm[c.Model] = nil
|
||||
}
|
||||
|
||||
if filterFn(c.Name) {
|
||||
dataModels = append(dataModels, schema.OpenAIModel{ID: c.Name, Object: "model"})
|
||||
}
|
||||
}
|
||||
|
||||
// Then iterate through the loose files:
|
||||
for _, m := range models {
|
||||
// And only adds them if they shouldn't be skipped.
|
||||
if _, exists := mm[m]; !exists && filterFn(m) {
|
||||
dataModels = append(dataModels, schema.OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
dataModels, err := lms.ListModels(filter, excludeConfigured)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.JSON(struct {
|
||||
|
@ -1,285 +0,0 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func readRequest(c *fiber.Ctx, ml *model.ModelLoader, o *config.ApplicationConfig, firstModel bool) (string, *schema.OpenAIRequest, error) {
|
||||
input := new(schema.OpenAIRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
|
||||
}
|
||||
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
ctx, cancel := context.WithCancel(o.Context)
|
||||
input.Context = ctx
|
||||
input.Cancel = cancel
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, firstModel)
|
||||
|
||||
return modelFile, input, err
|
||||
}
|
||||
|
||||
// this function check if the string is an URL, if it's an URL downloads the image in memory
|
||||
// encodes it in base64 and returns the base64 string
|
||||
func getBase64Image(s string) (string, error) {
|
||||
if strings.HasPrefix(s, "http") {
|
||||
// download the image
|
||||
resp, err := http.Get(s)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// read the image data into memory
|
||||
data, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// encode the image data in base64
|
||||
encoded := base64.StdEncoding.EncodeToString(data)
|
||||
|
||||
// return the base64 string
|
||||
return encoded, nil
|
||||
}
|
||||
|
||||
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
|
||||
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
|
||||
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
|
||||
}
|
||||
return "", fmt.Errorf("not valid string")
|
||||
}
|
||||
|
||||
func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIRequest) {
|
||||
if input.Echo {
|
||||
config.Echo = input.Echo
|
||||
}
|
||||
if input.TopK != nil {
|
||||
config.TopK = input.TopK
|
||||
}
|
||||
if input.TopP != nil {
|
||||
config.TopP = input.TopP
|
||||
}
|
||||
|
||||
if input.Backend != "" {
|
||||
config.Backend = input.Backend
|
||||
}
|
||||
|
||||
if input.ClipSkip != 0 {
|
||||
config.Diffusers.ClipSkip = input.ClipSkip
|
||||
}
|
||||
|
||||
if input.ModelBaseName != "" {
|
||||
config.AutoGPTQ.ModelBaseName = input.ModelBaseName
|
||||
}
|
||||
|
||||
if input.NegativePromptScale != 0 {
|
||||
config.NegativePromptScale = input.NegativePromptScale
|
||||
}
|
||||
|
||||
if input.UseFastTokenizer {
|
||||
config.UseFastTokenizer = input.UseFastTokenizer
|
||||
}
|
||||
|
||||
if input.NegativePrompt != "" {
|
||||
config.NegativePrompt = input.NegativePrompt
|
||||
}
|
||||
|
||||
if input.RopeFreqBase != 0 {
|
||||
config.RopeFreqBase = input.RopeFreqBase
|
||||
}
|
||||
|
||||
if input.RopeFreqScale != 0 {
|
||||
config.RopeFreqScale = input.RopeFreqScale
|
||||
}
|
||||
|
||||
if input.Grammar != "" {
|
||||
config.Grammar = input.Grammar
|
||||
}
|
||||
|
||||
if input.Temperature != nil {
|
||||
config.Temperature = input.Temperature
|
||||
}
|
||||
|
||||
if input.Maxtokens != nil {
|
||||
config.Maxtokens = input.Maxtokens
|
||||
}
|
||||
|
||||
switch stop := input.Stop.(type) {
|
||||
case string:
|
||||
if stop != "" {
|
||||
config.StopWords = append(config.StopWords, stop)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range stop {
|
||||
if s, ok := pp.(string); ok {
|
||||
config.StopWords = append(config.StopWords, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
for _, tool := range input.Tools {
|
||||
input.Functions = append(input.Functions, tool.Function)
|
||||
}
|
||||
}
|
||||
|
||||
if input.ToolsChoice != nil {
|
||||
var toolChoice grammar.Tool
|
||||
|
||||
switch content := input.ToolsChoice.(type) {
|
||||
case string:
|
||||
_ = json.Unmarshal([]byte(content), &toolChoice)
|
||||
case map[string]interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
_ = json.Unmarshal(dat, &toolChoice)
|
||||
}
|
||||
input.FunctionCall = map[string]interface{}{
|
||||
"name": toolChoice.Function.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Decode each request's message content
|
||||
index := 0
|
||||
for i, m := range input.Messages {
|
||||
switch content := m.Content.(type) {
|
||||
case string:
|
||||
input.Messages[i].StringContent = content
|
||||
case []interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
c := []schema.Content{}
|
||||
json.Unmarshal(dat, &c)
|
||||
for _, pp := range c {
|
||||
if pp.Type == "text" {
|
||||
input.Messages[i].StringContent = pp.Text
|
||||
} else if pp.Type == "image_url" {
|
||||
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
|
||||
base64, err := getBase64Image(pp.ImageURL.URL)
|
||||
if err == nil {
|
||||
input.Messages[i].StringImages = append(input.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
|
||||
// set a placeholder for each image
|
||||
input.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + input.Messages[i].StringContent
|
||||
index++
|
||||
} else {
|
||||
fmt.Print("Failed encoding image", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if input.RepeatPenalty != 0 {
|
||||
config.RepeatPenalty = input.RepeatPenalty
|
||||
}
|
||||
|
||||
if input.FrequencyPenalty != 0 {
|
||||
config.FrequencyPenalty = input.FrequencyPenalty
|
||||
}
|
||||
|
||||
if input.PresencePenalty != 0 {
|
||||
config.PresencePenalty = input.PresencePenalty
|
||||
}
|
||||
|
||||
if input.Keep != 0 {
|
||||
config.Keep = input.Keep
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
config.Batch = input.Batch
|
||||
}
|
||||
|
||||
if input.IgnoreEOS {
|
||||
config.IgnoreEOS = input.IgnoreEOS
|
||||
}
|
||||
|
||||
if input.Seed != nil {
|
||||
config.Seed = input.Seed
|
||||
}
|
||||
|
||||
if input.TypicalP != nil {
|
||||
config.TypicalP = input.TypicalP
|
||||
}
|
||||
|
||||
switch inputs := input.Input.(type) {
|
||||
case string:
|
||||
if inputs != "" {
|
||||
config.InputStrings = append(config.InputStrings, inputs)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range inputs {
|
||||
switch i := pp.(type) {
|
||||
case string:
|
||||
config.InputStrings = append(config.InputStrings, i)
|
||||
case []interface{}:
|
||||
tokens := []int{}
|
||||
for _, ii := range i {
|
||||
tokens = append(tokens, int(ii.(float64)))
|
||||
}
|
||||
config.InputToken = append(config.InputToken, tokens)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Can be either a string or an object
|
||||
switch fnc := input.FunctionCall.(type) {
|
||||
case string:
|
||||
if fnc != "" {
|
||||
config.SetFunctionCallString(fnc)
|
||||
}
|
||||
case map[string]interface{}:
|
||||
var name string
|
||||
n, exists := fnc["name"]
|
||||
if exists {
|
||||
nn, e := n.(string)
|
||||
if e {
|
||||
name = nn
|
||||
}
|
||||
}
|
||||
config.SetFunctionCallNameString(name)
|
||||
}
|
||||
|
||||
switch p := input.Prompt.(type) {
|
||||
case string:
|
||||
config.PromptStrings = append(config.PromptStrings, p)
|
||||
case []interface{}:
|
||||
for _, pp := range p {
|
||||
if s, ok := pp.(string); ok {
|
||||
config.PromptStrings = append(config.PromptStrings, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func mergeRequestWithConfig(modelFile string, input *schema.OpenAIRequest, cm *config.BackendConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.BackendConfig, *schema.OpenAIRequest, error) {
|
||||
cfg, err := cm.LoadBackendConfigFileByName(modelFile, loader.ModelPath,
|
||||
config.LoadOptionDebug(debug),
|
||||
config.LoadOptionThreads(threads),
|
||||
config.LoadOptionContextSize(ctx),
|
||||
config.LoadOptionF16(f16),
|
||||
)
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateRequestConfig(cfg, input)
|
||||
|
||||
return cfg, input, err
|
||||
}
|
@ -9,8 +9,7 @@ import (
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
@ -23,17 +22,15 @@ import (
|
||||
// @Param file formData file true "file"
|
||||
// @Success 200 {object} map[string]string "Response"
|
||||
// @Router /v1/audio/transcriptions [post]
|
||||
func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func TranscriptEndpoint(fce *fiberContext.FiberContextExtractor, tbs *backend.TranscriptionBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
m, input, err := readRequest(c, ml, appConfig, false)
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
// TODO: Investigate this file copy stuff later - potentially belongs in service.
|
||||
|
||||
// retrieve the file data from the request
|
||||
file, err := c.FormFile("file")
|
||||
if err != nil {
|
||||
@ -65,13 +62,16 @@ func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
|
||||
|
||||
log.Debug().Msgf("Audio file copied to: %+v", dst)
|
||||
|
||||
tr, err := backend.ModelTranscription(dst, input.Language, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
request.File = dst
|
||||
|
||||
log.Debug().Msgf("Trascribed: %+v", tr)
|
||||
responseChannel := tbs.Transcribe(request)
|
||||
rawResponse := <-responseChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
log.Debug().Msgf("Transcribed: %+v", rawResponse.Value)
|
||||
// TODO: handle different outputs here
|
||||
return c.Status(http.StatusOK).JSON(tr)
|
||||
return c.Status(http.StatusOK).JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
@ -10,7 +10,7 @@ type Segment struct {
|
||||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
||||
type Result struct {
|
||||
type TranscriptionResult struct {
|
||||
Segments []Segment `json:"segments"`
|
||||
Text string `json:"text"`
|
||||
}
|
@ -15,22 +15,22 @@ import (
|
||||
gopsutil "github.com/shirou/gopsutil/v3/process"
|
||||
)
|
||||
|
||||
type BackendMonitor struct {
|
||||
type BackendMonitorService struct {
|
||||
configLoader *config.BackendConfigLoader
|
||||
modelLoader *model.ModelLoader
|
||||
options *config.ApplicationConfig // Taking options in case we need to inspect ExternalGRPCBackends, though that's out of scope for now, hence the name.
|
||||
}
|
||||
|
||||
func NewBackendMonitor(configLoader *config.BackendConfigLoader, modelLoader *model.ModelLoader, appConfig *config.ApplicationConfig) BackendMonitor {
|
||||
return BackendMonitor{
|
||||
func NewBackendMonitorService(modelLoader *model.ModelLoader, configLoader *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *BackendMonitorService {
|
||||
return &BackendMonitorService{
|
||||
configLoader: configLoader,
|
||||
modelLoader: modelLoader,
|
||||
options: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (bm BackendMonitor) getModelLoaderIDFromModelName(modelName string) (string, error) {
|
||||
config, exists := bm.configLoader.GetBackendConfig(modelName)
|
||||
func (bms BackendMonitorService) getModelLoaderIDFromModelName(modelName string) (string, error) {
|
||||
config, exists := bms.configLoader.GetBackendConfig(modelName)
|
||||
var backendId string
|
||||
if exists {
|
||||
backendId = config.Model
|
||||
@ -46,8 +46,8 @@ func (bm BackendMonitor) getModelLoaderIDFromModelName(modelName string) (string
|
||||
return backendId, nil
|
||||
}
|
||||
|
||||
func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.BackendMonitorResponse, error) {
|
||||
config, exists := bm.configLoader.GetBackendConfig(model)
|
||||
func (bms *BackendMonitorService) SampleLocalBackendProcess(model string) (*schema.BackendMonitorResponse, error) {
|
||||
config, exists := bms.configLoader.GetBackendConfig(model)
|
||||
var backend string
|
||||
if exists {
|
||||
backend = config.Model
|
||||
@ -60,7 +60,7 @@ func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.Backe
|
||||
backend = fmt.Sprintf("%s.bin", backend)
|
||||
}
|
||||
|
||||
pid, err := bm.modelLoader.GetGRPCPID(backend)
|
||||
pid, err := bms.modelLoader.GetGRPCPID(backend)
|
||||
|
||||
if err != nil {
|
||||
log.Error().Err(err).Str("model", model).Msg("failed to find GRPC pid")
|
||||
@ -101,12 +101,12 @@ func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.Backe
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (bm BackendMonitor) CheckAndSample(modelName string) (*proto.StatusResponse, error) {
|
||||
backendId, err := bm.getModelLoaderIDFromModelName(modelName)
|
||||
func (bms BackendMonitorService) CheckAndSample(modelName string) (*proto.StatusResponse, error) {
|
||||
backendId, err := bms.getModelLoaderIDFromModelName(modelName)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
modelAddr := bm.modelLoader.CheckIsLoaded(backendId)
|
||||
modelAddr := bms.modelLoader.CheckIsLoaded(backendId)
|
||||
if modelAddr == "" {
|
||||
return nil, fmt.Errorf("backend %s is not currently loaded", backendId)
|
||||
}
|
||||
@ -114,7 +114,7 @@ func (bm BackendMonitor) CheckAndSample(modelName string) (*proto.StatusResponse
|
||||
status, rpcErr := modelAddr.GRPC(false, nil).Status(context.TODO())
|
||||
if rpcErr != nil {
|
||||
log.Warn().Msgf("backend %s experienced an error retrieving status info: %s", backendId, rpcErr.Error())
|
||||
val, slbErr := bm.SampleLocalBackendProcess(backendId)
|
||||
val, slbErr := bms.SampleLocalBackendProcess(backendId)
|
||||
if slbErr != nil {
|
||||
return nil, fmt.Errorf("backend %s experienced an error retrieving status info via rpc: %s, then failed local node process sample: %s", backendId, rpcErr.Error(), slbErr.Error())
|
||||
}
|
||||
@ -131,10 +131,10 @@ func (bm BackendMonitor) CheckAndSample(modelName string) (*proto.StatusResponse
|
||||
return status, nil
|
||||
}
|
||||
|
||||
func (bm BackendMonitor) ShutdownModel(modelName string) error {
|
||||
backendId, err := bm.getModelLoaderIDFromModelName(modelName)
|
||||
func (bms BackendMonitorService) ShutdownModel(modelName string) error {
|
||||
backendId, err := bms.getModelLoaderIDFromModelName(modelName)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return bm.modelLoader.ShutdownModel(backendId)
|
||||
return bms.modelLoader.ShutdownModel(backendId)
|
||||
}
|
||||
|
@ -3,14 +3,18 @@ package services
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/embedded"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/startup"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v2"
|
||||
)
|
||||
|
||||
@ -29,18 +33,6 @@ func NewGalleryService(modelPath string) *GalleryService {
|
||||
}
|
||||
}
|
||||
|
||||
func prepareModel(modelPath string, req gallery.GalleryModel, cl *config.BackendConfigLoader, downloadStatus func(string, string, string, float64)) error {
|
||||
|
||||
config, err := gallery.GetGalleryConfigFromURL(req.URL)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
config.Files = append(config.Files, req.AdditionalFiles...)
|
||||
|
||||
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
|
||||
}
|
||||
|
||||
func (g *GalleryService) UpdateStatus(s string, op *gallery.GalleryOpStatus) {
|
||||
g.Lock()
|
||||
defer g.Unlock()
|
||||
@ -92,10 +84,10 @@ func (g *GalleryService) Start(c context.Context, cl *config.BackendConfigLoader
|
||||
err = gallery.InstallModelFromGalleryByName(op.Galleries, op.GalleryName, g.modelPath, op.Req, progressCallback)
|
||||
}
|
||||
} else if op.ConfigURL != "" {
|
||||
startup.PreloadModelsConfigurations(op.ConfigURL, g.modelPath, op.ConfigURL)
|
||||
PreloadModelsConfigurations(op.ConfigURL, g.modelPath, op.ConfigURL)
|
||||
err = cl.Preload(g.modelPath)
|
||||
} else {
|
||||
err = prepareModel(g.modelPath, op.Req, cl, progressCallback)
|
||||
err = prepareModel(g.modelPath, op.Req, progressCallback)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
@ -127,13 +119,12 @@ type galleryModel struct {
|
||||
ID string `json:"id"`
|
||||
}
|
||||
|
||||
func processRequests(modelPath, s string, cm *config.BackendConfigLoader, galleries []gallery.Gallery, requests []galleryModel) error {
|
||||
func processRequests(modelPath string, galleries []gallery.Gallery, requests []galleryModel) error {
|
||||
var err error
|
||||
for _, r := range requests {
|
||||
utils.ResetDownloadTimers()
|
||||
if r.ID == "" {
|
||||
err = prepareModel(modelPath, r.GalleryModel, cm, utils.DisplayDownloadFunction)
|
||||
|
||||
err = prepareModel(modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
|
||||
} else {
|
||||
if strings.Contains(r.ID, "@") {
|
||||
err = gallery.InstallModelFromGallery(
|
||||
@ -158,7 +149,7 @@ func ApplyGalleryFromFile(modelPath, s string, cl *config.BackendConfigLoader, g
|
||||
return err
|
||||
}
|
||||
|
||||
return processRequests(modelPath, s, cl, galleries, requests)
|
||||
return processRequests(modelPath, galleries, requests)
|
||||
}
|
||||
|
||||
func ApplyGalleryFromString(modelPath, s string, cl *config.BackendConfigLoader, galleries []gallery.Gallery) error {
|
||||
@ -168,5 +159,90 @@ func ApplyGalleryFromString(modelPath, s string, cl *config.BackendConfigLoader,
|
||||
return err
|
||||
}
|
||||
|
||||
return processRequests(modelPath, s, cl, galleries, requests)
|
||||
return processRequests(modelPath, galleries, requests)
|
||||
}
|
||||
|
||||
// PreloadModelsConfigurations will preload models from the given list of URLs
|
||||
// It will download the model if it is not already present in the model path
|
||||
// It will also try to resolve if the model is an embedded model YAML configuration
|
||||
func PreloadModelsConfigurations(modelLibraryURL string, modelPath string, models ...string) {
|
||||
for _, url := range models {
|
||||
|
||||
// As a best effort, try to resolve the model from the remote library
|
||||
// if it's not resolved we try with the other method below
|
||||
if modelLibraryURL != "" {
|
||||
lib, err := embedded.GetRemoteLibraryShorteners(modelLibraryURL)
|
||||
if err == nil {
|
||||
if lib[url] != "" {
|
||||
log.Debug().Msgf("[startup] model configuration is defined remotely: %s (%s)", url, lib[url])
|
||||
url = lib[url]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
url = embedded.ModelShortURL(url)
|
||||
switch {
|
||||
case embedded.ExistsInModelsLibrary(url):
|
||||
modelYAML, err := embedded.ResolveContent(url)
|
||||
// If we resolve something, just save it to disk and continue
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error resolving model content")
|
||||
continue
|
||||
}
|
||||
|
||||
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
|
||||
md5Name := utils.MD5(url)
|
||||
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
|
||||
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
|
||||
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error writing model definition")
|
||||
}
|
||||
case downloader.LooksLikeURL(url):
|
||||
log.Debug().Msgf("[startup] resolved model to download: %s", url)
|
||||
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(url)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
|
||||
err := downloader.DownloadFile(url, modelDefinitionFilePath, "", func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
})
|
||||
if err != nil {
|
||||
log.Error().Err(err).Str("url", url).Str("filepath", modelDefinitionFilePath).Msg("error downloading model")
|
||||
}
|
||||
}
|
||||
default:
|
||||
if _, err := os.Stat(url); err == nil {
|
||||
log.Debug().Msgf("[startup] resolved local model: %s", url)
|
||||
// copy to modelPath
|
||||
md5Name := utils.MD5(url)
|
||||
|
||||
modelYAML, err := os.ReadFile(url)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Str("filepath", url).Msg("error reading model definition")
|
||||
continue
|
||||
}
|
||||
|
||||
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
|
||||
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
|
||||
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error loading model: %s")
|
||||
}
|
||||
} else {
|
||||
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func prepareModel(modelPath string, req gallery.GalleryModel, downloadStatus func(string, string, string, float64)) error {
|
||||
|
||||
config, err := gallery.GetGalleryConfigFromURL(req.URL)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
config.Files = append(config.Files, req.AdditionalFiles...)
|
||||
|
||||
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
|
||||
}
|
||||
|
72
core/services/list_models.go
Normal file
72
core/services/list_models.go
Normal file
@ -0,0 +1,72 @@
|
||||
package services
|
||||
|
||||
import (
|
||||
"regexp"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type ListModelsService struct {
|
||||
bcl *config.BackendConfigLoader
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewListModelsService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ListModelsService {
|
||||
return &ListModelsService{
|
||||
bcl: bcl,
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (lms *ListModelsService) ListModels(filter string, excludeConfigured bool) ([]schema.OpenAIModel, error) {
|
||||
|
||||
models, err := lms.ml.ListModels()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var mm map[string]interface{} = map[string]interface{}{}
|
||||
|
||||
dataModels := []schema.OpenAIModel{}
|
||||
|
||||
var filterFn func(name string) bool
|
||||
|
||||
// If filter is not specified, do not filter the list by model name
|
||||
if filter == "" {
|
||||
filterFn = func(_ string) bool { return true }
|
||||
} else {
|
||||
// If filter _IS_ specified, we compile it to a regex which is used to create the filterFn
|
||||
rxp, err := regexp.Compile(filter)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
filterFn = func(name string) bool {
|
||||
return rxp.MatchString(name)
|
||||
}
|
||||
}
|
||||
|
||||
// Start with the known configurations
|
||||
for _, c := range lms.bcl.GetAllBackendConfigs() {
|
||||
if excludeConfigured {
|
||||
mm[c.Model] = nil
|
||||
}
|
||||
|
||||
if filterFn(c.Name) {
|
||||
dataModels = append(dataModels, schema.OpenAIModel{ID: c.Name, Object: "model"})
|
||||
}
|
||||
}
|
||||
|
||||
// Then iterate through the loose files:
|
||||
for _, m := range models {
|
||||
// And only adds them if they shouldn't be skipped.
|
||||
if _, exists := mm[m]; !exists && filterFn(m) {
|
||||
dataModels = append(dataModels, schema.OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
}
|
||||
|
||||
return dataModels, nil
|
||||
}
|
@ -1,13 +1,14 @@
|
||||
package startup_test
|
||||
package services_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
. "github.com/go-skynet/LocalAI/pkg/startup"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
|
||||
. "github.com/go-skynet/LocalAI/core/services"
|
||||
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
)
|
808
core/services/openai.go
Normal file
808
core/services/openai.go
Normal file
@ -0,0 +1,808 @@
|
||||
package services
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/google/uuid"
|
||||
"github.com/imdario/mergo"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type endpointGenerationConfigurationFn func(bc *config.BackendConfig, request *schema.OpenAIRequest) endpointConfiguration
|
||||
|
||||
type endpointConfiguration struct {
|
||||
SchemaObject string
|
||||
TemplatePath string
|
||||
TemplateData model.PromptTemplateData
|
||||
ResultMappingFn func(resp *backend.LLMResponse, index int) schema.Choice
|
||||
CompletionMappingFn func(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse]
|
||||
TokenMappingFn func(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse]
|
||||
}
|
||||
|
||||
// TODO: This is used for completion and edit. I am pretty sure I forgot parts, but fix it later.
|
||||
func simpleMapper(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
if resp.Error != nil || resp.Value == nil {
|
||||
return concurrency.ErrorOr[*schema.OpenAIResponse]{Error: resp.Error}
|
||||
}
|
||||
return concurrency.ErrorOr[*schema.OpenAIResponse]{
|
||||
Value: &schema.OpenAIResponse{
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Text: resp.Value.Response,
|
||||
},
|
||||
},
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: resp.Value.Usage.Prompt,
|
||||
CompletionTokens: resp.Value.Usage.Completion,
|
||||
TotalTokens: resp.Value.Usage.Prompt + resp.Value.Usage.Completion,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Consider alternative names for this.
|
||||
// The purpose of this struct is to hold a reference to the OpenAI request context information
|
||||
// This keeps things simple within core/services/openai.go and allows consumers to "see" this information if they need it
|
||||
type OpenAIRequestTraceID struct {
|
||||
ID string
|
||||
Created int
|
||||
}
|
||||
|
||||
// This type split out from core/backend/llm.go - I'm still not _totally_ sure about this, but it seems to make sense to keep the generic LLM code from the OpenAI specific higher level functionality
|
||||
type OpenAIService struct {
|
||||
bcl *config.BackendConfigLoader
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
llmbs *backend.LLMBackendService
|
||||
}
|
||||
|
||||
func NewOpenAIService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig, llmbs *backend.LLMBackendService) *OpenAIService {
|
||||
return &OpenAIService{
|
||||
bcl: bcl,
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
llmbs: llmbs,
|
||||
}
|
||||
}
|
||||
|
||||
// Keeping in place as a reminder to POTENTIALLY ADD MORE VALIDATION HERE???
|
||||
func (oais *OpenAIService) getConfig(request *schema.OpenAIRequest) (*config.BackendConfig, *schema.OpenAIRequest, error) {
|
||||
return oais.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, oais.appConfig)
|
||||
}
|
||||
|
||||
// TODO: It would be a lot less messy to make a return struct that had references to each of these channels
|
||||
// INTENTIONALLY not doing that quite yet - I believe we need to let the references to unused channels die for the GC to automatically collect -- can we manually free()?
|
||||
// finalResultsChannel is the primary async return path: one result for the entire request.
|
||||
// promptResultsChannels is DUBIOUS. It's expected to be raw fan-out used within the function itself, but I am exposing for testing? One bundle of LLMResponseBundle per PromptString? Gets all N completions for a single prompt.
|
||||
// completionsChannel is a channel that emits one *LLMResponse per generated completion, be that different prompts or N. Seems the most useful other than "entire request" Request is available to attempt tracing???
|
||||
// tokensChannel is a channel that emits one *LLMResponse per generated token. Let's see what happens!
|
||||
func (oais *OpenAIService) Completion(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool) (
|
||||
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], promptResultsChannels []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle],
|
||||
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
|
||||
|
||||
return oais.GenerateTextFromRequest(request, func(bc *config.BackendConfig, request *schema.OpenAIRequest) endpointConfiguration {
|
||||
return endpointConfiguration{
|
||||
SchemaObject: "text_completion",
|
||||
TemplatePath: bc.TemplateConfig.Completion,
|
||||
TemplateData: model.PromptTemplateData{
|
||||
SystemPrompt: bc.SystemPrompt,
|
||||
},
|
||||
ResultMappingFn: func(resp *backend.LLMResponse, promptIndex int) schema.Choice {
|
||||
return schema.Choice{
|
||||
Index: promptIndex,
|
||||
FinishReason: "stop",
|
||||
Text: resp.Response,
|
||||
}
|
||||
},
|
||||
CompletionMappingFn: simpleMapper,
|
||||
TokenMappingFn: simpleMapper,
|
||||
}
|
||||
}, notifyOnPromptResult, notifyOnToken, nil)
|
||||
}
|
||||
|
||||
func (oais *OpenAIService) Edit(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool) (
|
||||
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], promptResultsChannels []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle],
|
||||
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
|
||||
|
||||
return oais.GenerateTextFromRequest(request, func(bc *config.BackendConfig, request *schema.OpenAIRequest) endpointConfiguration {
|
||||
|
||||
return endpointConfiguration{
|
||||
SchemaObject: "edit",
|
||||
TemplatePath: bc.TemplateConfig.Edit,
|
||||
TemplateData: model.PromptTemplateData{
|
||||
SystemPrompt: bc.SystemPrompt,
|
||||
Instruction: request.Instruction,
|
||||
},
|
||||
ResultMappingFn: func(resp *backend.LLMResponse, promptIndex int) schema.Choice {
|
||||
return schema.Choice{
|
||||
Index: promptIndex,
|
||||
FinishReason: "stop",
|
||||
Text: resp.Response,
|
||||
}
|
||||
},
|
||||
CompletionMappingFn: simpleMapper,
|
||||
TokenMappingFn: simpleMapper,
|
||||
}
|
||||
}, notifyOnPromptResult, notifyOnToken, nil)
|
||||
}
|
||||
|
||||
func (oais *OpenAIService) Chat(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool) (
|
||||
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse],
|
||||
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
|
||||
|
||||
return oais.GenerateFromMultipleMessagesChatRequest(request, notifyOnPromptResult, notifyOnToken, nil)
|
||||
}
|
||||
|
||||
func (oais *OpenAIService) GenerateTextFromRequest(request *schema.OpenAIRequest, endpointConfigFn endpointGenerationConfigurationFn, notifyOnPromptResult bool, notifyOnToken bool, initialTraceID *OpenAIRequestTraceID) (
|
||||
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], promptResultsChannels []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle],
|
||||
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
|
||||
|
||||
if initialTraceID == nil {
|
||||
traceID = &OpenAIRequestTraceID{
|
||||
ID: uuid.New().String(),
|
||||
Created: int(time.Now().Unix()),
|
||||
}
|
||||
} else {
|
||||
traceID = initialTraceID
|
||||
}
|
||||
|
||||
bc, request, err := oais.getConfig(request)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msgf("[oais::GenerateTextFromRequest] error getting configuration")
|
||||
return
|
||||
}
|
||||
|
||||
if request.ResponseFormat.Type == "json_object" {
|
||||
request.Grammar = grammar.JSONBNF
|
||||
}
|
||||
|
||||
bc.Grammar = request.Grammar
|
||||
|
||||
if request.Stream && len(bc.PromptStrings) > 1 {
|
||||
log.Warn().Msg("potentially cannot handle more than 1 `PromptStrings` when Streaming?")
|
||||
}
|
||||
|
||||
rawFinalResultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
finalResultChannel = rawFinalResultChannel
|
||||
promptResultsChannels = []<-chan concurrency.ErrorOr[*backend.LLMResponseBundle]{}
|
||||
var rawCompletionsChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
|
||||
var rawTokenChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
|
||||
if notifyOnPromptResult {
|
||||
rawCompletionsChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
}
|
||||
if notifyOnToken {
|
||||
rawTokenChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
}
|
||||
|
||||
promptResultsChannelLock := sync.Mutex{}
|
||||
|
||||
endpointConfig := endpointConfigFn(bc, request)
|
||||
|
||||
if len(endpointConfig.TemplatePath) == 0 {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if oais.ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", bc.Model)) {
|
||||
endpointConfig.TemplatePath = bc.Model
|
||||
} else {
|
||||
log.Warn().Msgf("failed to find any template for %+v", request)
|
||||
}
|
||||
}
|
||||
|
||||
setupWG := sync.WaitGroup{}
|
||||
var prompts []string
|
||||
if lPS := len(bc.PromptStrings); lPS > 0 {
|
||||
setupWG.Add(lPS)
|
||||
prompts = bc.PromptStrings
|
||||
} else {
|
||||
setupWG.Add(len(bc.InputStrings))
|
||||
prompts = bc.InputStrings
|
||||
}
|
||||
|
||||
var setupError error = nil
|
||||
|
||||
for pI, p := range prompts {
|
||||
|
||||
go func(promptIndex int, prompt string) {
|
||||
if endpointConfig.TemplatePath != "" {
|
||||
promptTemplateData := model.PromptTemplateData{
|
||||
Input: prompt,
|
||||
}
|
||||
err := mergo.Merge(promptTemplateData, endpointConfig.TemplateData, mergo.WithOverride)
|
||||
if err == nil {
|
||||
templatedInput, err := oais.ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, endpointConfig.TemplatePath, promptTemplateData)
|
||||
if err == nil {
|
||||
prompt = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", prompt)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("[OAIS GenerateTextFromRequest] Prompt: %q", prompt)
|
||||
promptResultsChannel, completionChannels, tokenChannels, err := oais.llmbs.GenerateText(prompt, request, bc,
|
||||
func(r *backend.LLMResponse) schema.Choice {
|
||||
return endpointConfig.ResultMappingFn(r, promptIndex)
|
||||
}, notifyOnPromptResult, notifyOnToken)
|
||||
if err != nil {
|
||||
log.Error().Msgf("Unable to generate text prompt: %q\nerr: %q", prompt, err)
|
||||
promptResultsChannelLock.Lock()
|
||||
setupError = errors.Join(setupError, err)
|
||||
promptResultsChannelLock.Unlock()
|
||||
setupWG.Done()
|
||||
return
|
||||
}
|
||||
if notifyOnPromptResult {
|
||||
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(completionChannels, endpointConfig.CompletionMappingFn), rawCompletionsChannel, true)
|
||||
}
|
||||
if notifyOnToken {
|
||||
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(tokenChannels, endpointConfig.TokenMappingFn), rawTokenChannel, true)
|
||||
}
|
||||
promptResultsChannelLock.Lock()
|
||||
promptResultsChannels = append(promptResultsChannels, promptResultsChannel)
|
||||
promptResultsChannelLock.Unlock()
|
||||
setupWG.Done()
|
||||
}(pI, p)
|
||||
|
||||
}
|
||||
setupWG.Wait()
|
||||
|
||||
// If any of the setup goroutines experienced an error, quit early here.
|
||||
if setupError != nil {
|
||||
go func() {
|
||||
log.Error().Err(setupError).Msgf("[OAIS GenerateTextFromRequest] caught an error during setup")
|
||||
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: setupError}
|
||||
close(rawFinalResultChannel)
|
||||
}()
|
||||
return
|
||||
}
|
||||
|
||||
initialResponse := &schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model,
|
||||
Object: endpointConfig.SchemaObject,
|
||||
Usage: schema.OpenAIUsage{},
|
||||
}
|
||||
|
||||
// utils.SliceOfChannelsRawMerger[[]schema.Choice](promptResultsChannels, rawFinalResultChannel, func(results []schema.Choice) (*schema.OpenAIResponse, error) {
|
||||
concurrency.SliceOfChannelsReducer(
|
||||
promptResultsChannels, rawFinalResultChannel,
|
||||
func(iv concurrency.ErrorOr[*backend.LLMResponseBundle], result concurrency.ErrorOr[*schema.OpenAIResponse]) concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
|
||||
if iv.Error != nil {
|
||||
result.Error = iv.Error
|
||||
return result
|
||||
}
|
||||
result.Value.Usage.PromptTokens += iv.Value.Usage.Prompt
|
||||
result.Value.Usage.CompletionTokens += iv.Value.Usage.Completion
|
||||
result.Value.Usage.TotalTokens = result.Value.Usage.PromptTokens + result.Value.Usage.CompletionTokens
|
||||
|
||||
result.Value.Choices = append(result.Value.Choices, iv.Value.Response...)
|
||||
|
||||
return result
|
||||
}, concurrency.ErrorOr[*schema.OpenAIResponse]{Value: initialResponse}, true)
|
||||
|
||||
completionsChannel = rawCompletionsChannel
|
||||
tokenChannel = rawTokenChannel
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// TODO: For porting sanity, this is distinct from GenerateTextFromRequest and is _currently_ specific to Chat purposes
|
||||
// this is not a final decision -- just a reality of moving a lot of parts at once
|
||||
// / This has _become_ Chat which wasn't the goal... More cleanup in the future once it's stable?
|
||||
func (oais *OpenAIService) GenerateFromMultipleMessagesChatRequest(request *schema.OpenAIRequest, notifyOnPromptResult bool, notifyOnToken bool, initialTraceID *OpenAIRequestTraceID) (
|
||||
traceID *OpenAIRequestTraceID, finalResultChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse],
|
||||
completionsChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], tokenChannel <-chan concurrency.ErrorOr[*schema.OpenAIResponse], err error) {
|
||||
|
||||
if initialTraceID == nil {
|
||||
traceID = &OpenAIRequestTraceID{
|
||||
ID: uuid.New().String(),
|
||||
Created: int(time.Now().Unix()),
|
||||
}
|
||||
} else {
|
||||
traceID = initialTraceID
|
||||
}
|
||||
|
||||
bc, request, err := oais.getConfig(request)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
// Allow the user to set custom actions via config file
|
||||
// to be "embedded" in each model
|
||||
noActionName := "answer"
|
||||
noActionDescription := "use this action to answer without performing any action"
|
||||
|
||||
if bc.FunctionsConfig.NoActionFunctionName != "" {
|
||||
noActionName = bc.FunctionsConfig.NoActionFunctionName
|
||||
}
|
||||
if bc.FunctionsConfig.NoActionDescriptionName != "" {
|
||||
noActionDescription = bc.FunctionsConfig.NoActionDescriptionName
|
||||
}
|
||||
|
||||
if request.ResponseFormat.Type == "json_object" {
|
||||
request.Grammar = grammar.JSONBNF
|
||||
}
|
||||
|
||||
bc.Grammar = request.Grammar
|
||||
|
||||
processFunctions := false
|
||||
funcs := grammar.Functions{}
|
||||
// process functions if we have any defined or if we have a function call string
|
||||
if len(request.Functions) > 0 && bc.ShouldUseFunctions() {
|
||||
log.Debug().Msgf("Response needs to process functions")
|
||||
|
||||
processFunctions = true
|
||||
|
||||
noActionGrammar := grammar.Function{
|
||||
Name: noActionName,
|
||||
Description: noActionDescription,
|
||||
Parameters: map[string]interface{}{
|
||||
"properties": map[string]interface{}{
|
||||
"message": map[string]interface{}{
|
||||
"type": "string",
|
||||
"description": "The message to reply the user with",
|
||||
}},
|
||||
},
|
||||
}
|
||||
|
||||
// Append the no action function
|
||||
funcs = append(funcs, request.Functions...)
|
||||
if !bc.FunctionsConfig.DisableNoAction {
|
||||
funcs = append(funcs, noActionGrammar)
|
||||
}
|
||||
|
||||
// Force picking one of the functions by the request
|
||||
if bc.FunctionToCall() != "" {
|
||||
funcs = funcs.Select(bc.FunctionToCall())
|
||||
}
|
||||
|
||||
// Update input grammar
|
||||
jsStruct := funcs.ToJSONStructure()
|
||||
bc.Grammar = jsStruct.Grammar("", bc.FunctionsConfig.ParallelCalls)
|
||||
} else if request.JSONFunctionGrammarObject != nil {
|
||||
bc.Grammar = request.JSONFunctionGrammarObject.Grammar("", bc.FunctionsConfig.ParallelCalls)
|
||||
}
|
||||
|
||||
if request.Stream && processFunctions {
|
||||
log.Warn().Msg("Streaming + Functions is highly experimental in this version")
|
||||
}
|
||||
|
||||
var predInput string
|
||||
|
||||
if !bc.TemplateConfig.UseTokenizerTemplate || processFunctions {
|
||||
|
||||
suppressConfigSystemPrompt := false
|
||||
mess := []string{}
|
||||
for messageIndex, i := range request.Messages {
|
||||
var content string
|
||||
role := i.Role
|
||||
|
||||
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
|
||||
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
|
||||
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
|
||||
roleFn := "assistant_function_call"
|
||||
r := bc.Roles[roleFn]
|
||||
if r != "" {
|
||||
role = roleFn
|
||||
}
|
||||
}
|
||||
r := bc.Roles[role]
|
||||
contentExists := i.Content != nil && i.StringContent != ""
|
||||
|
||||
fcall := i.FunctionCall
|
||||
if len(i.ToolCalls) > 0 {
|
||||
fcall = i.ToolCalls
|
||||
}
|
||||
|
||||
// First attempt to populate content via a chat message specific template
|
||||
if bc.TemplateConfig.ChatMessage != "" {
|
||||
chatMessageData := model.ChatMessageTemplateData{
|
||||
SystemPrompt: bc.SystemPrompt,
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
FunctionCall: fcall,
|
||||
FunctionName: i.Name,
|
||||
LastMessage: messageIndex == (len(request.Messages) - 1),
|
||||
Function: bc.Grammar != "" && (messageIndex == (len(request.Messages) - 1)),
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := oais.ml.EvaluateTemplateForChatMessage(bc.TemplateConfig.ChatMessage, chatMessageData)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, bc.TemplateConfig.ChatMessage, err)
|
||||
} else {
|
||||
if templatedChatMessage == "" {
|
||||
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", bc.TemplateConfig.ChatMessage, chatMessageData)
|
||||
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
|
||||
}
|
||||
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
|
||||
content = templatedChatMessage
|
||||
}
|
||||
}
|
||||
marshalAnyRole := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + fmt.Sprint(r, " ", string(j))
|
||||
} else {
|
||||
content = fmt.Sprint(r, " ", string(j))
|
||||
}
|
||||
}
|
||||
}
|
||||
marshalAny := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + string(j)
|
||||
} else {
|
||||
content = string(j)
|
||||
}
|
||||
}
|
||||
}
|
||||
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
|
||||
if content == "" {
|
||||
if r != "" {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(r, i.StringContent)
|
||||
}
|
||||
|
||||
if i.FunctionCall != nil {
|
||||
marshalAnyRole(i.FunctionCall)
|
||||
}
|
||||
} else {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(i.StringContent)
|
||||
}
|
||||
|
||||
if i.FunctionCall != nil {
|
||||
marshalAny(i.FunctionCall)
|
||||
}
|
||||
|
||||
if i.ToolCalls != nil {
|
||||
marshalAny(i.ToolCalls)
|
||||
}
|
||||
}
|
||||
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
|
||||
if contentExists && role == "system" {
|
||||
suppressConfigSystemPrompt = true
|
||||
}
|
||||
}
|
||||
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
|
||||
log.Debug().Msgf("Prompt (before templating): %s", predInput)
|
||||
|
||||
templateFile := ""
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if oais.ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", bc.Model)) {
|
||||
templateFile = bc.Model
|
||||
}
|
||||
|
||||
if bc.TemplateConfig.Chat != "" && !processFunctions {
|
||||
templateFile = bc.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
if bc.TemplateConfig.Functions != "" && processFunctions {
|
||||
templateFile = bc.TemplateConfig.Functions
|
||||
}
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := oais.ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: bc.SystemPrompt,
|
||||
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
||||
Input: predInput,
|
||||
Functions: funcs,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
} else {
|
||||
log.Debug().Msgf("Template failed loading: %s", err.Error())
|
||||
}
|
||||
}
|
||||
}
|
||||
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
||||
if processFunctions {
|
||||
log.Debug().Msgf("Grammar: %+v", bc.Grammar)
|
||||
}
|
||||
|
||||
rawFinalResultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
var rawCompletionsChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
|
||||
var rawTokenChannel chan concurrency.ErrorOr[*schema.OpenAIResponse]
|
||||
if notifyOnPromptResult {
|
||||
rawCompletionsChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
}
|
||||
if notifyOnToken {
|
||||
rawTokenChannel = make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
}
|
||||
|
||||
rawResultChannel, individualCompletionChannels, tokenChannels, err := oais.llmbs.GenerateText(predInput, request, bc, func(resp *backend.LLMResponse) schema.Choice {
|
||||
return schema.Choice{
|
||||
Index: 0, // ???
|
||||
FinishReason: "stop",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
Content: resp.Response,
|
||||
},
|
||||
}
|
||||
}, notifyOnPromptResult, notifyOnToken)
|
||||
|
||||
chatSimpleMappingFn := func(resp concurrency.ErrorOr[*backend.LLMResponse]) concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
if resp.Error != nil || resp.Value == nil {
|
||||
return concurrency.ErrorOr[*schema.OpenAIResponse]{Error: resp.Error}
|
||||
}
|
||||
return concurrency.ErrorOr[*schema.OpenAIResponse]{
|
||||
Value: &schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
Content: resp.Value.Response,
|
||||
},
|
||||
Index: 0,
|
||||
},
|
||||
},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: resp.Value.Usage.Prompt,
|
||||
CompletionTokens: resp.Value.Usage.Completion,
|
||||
TotalTokens: resp.Value.Usage.Prompt + resp.Value.Usage.Completion,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if notifyOnPromptResult {
|
||||
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(individualCompletionChannels, chatSimpleMappingFn), rawCompletionsChannel, true)
|
||||
}
|
||||
if notifyOnToken {
|
||||
concurrency.SliceOfChannelsRawMergerWithoutMapping(concurrency.SliceOfChannelsTransformer(tokenChannels, chatSimpleMappingFn), rawTokenChannel, true)
|
||||
}
|
||||
|
||||
go func() {
|
||||
rawResult := <-rawResultChannel
|
||||
if rawResult.Error != nil {
|
||||
log.Warn().Msgf("OpenAIService::processTools GenerateText error [DEBUG THIS?] %q", rawResult.Error)
|
||||
return
|
||||
}
|
||||
llmResponseChoices := rawResult.Value.Response
|
||||
|
||||
if processFunctions && len(llmResponseChoices) > 1 {
|
||||
log.Warn().Msgf("chat functions response with %d choices in response, debug this?", len(llmResponseChoices))
|
||||
log.Debug().Msgf("%+v", llmResponseChoices)
|
||||
}
|
||||
|
||||
for _, result := range rawResult.Value.Response {
|
||||
// If no functions, just return the raw result.
|
||||
if !processFunctions {
|
||||
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{result},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: rawResult.Value.Usage.Prompt,
|
||||
CompletionTokens: rawResult.Value.Usage.Completion,
|
||||
TotalTokens: rawResult.Value.Usage.Prompt + rawResult.Value.Usage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &resp}
|
||||
|
||||
continue
|
||||
}
|
||||
// At this point, things are function specific!
|
||||
|
||||
// Oh no this can't be the right way to do this... but it works. Save us, mudler!
|
||||
fString := fmt.Sprintf("%s", result.Message.Content)
|
||||
results := parseFunctionCall(fString, bc.FunctionsConfig.ParallelCalls)
|
||||
noActionToRun := (len(results) > 0 && results[0].name == noActionName)
|
||||
|
||||
if noActionToRun {
|
||||
log.Debug().Msg("-- noActionToRun branch --")
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: ""}}},
|
||||
Object: "stop",
|
||||
}
|
||||
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &initialMessage}
|
||||
|
||||
result, err := oais.handleQuestion(bc, request, results[0].arguments, predInput)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error handling question: %s", err.Error())
|
||||
return
|
||||
}
|
||||
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: rawResult.Value.Usage.Prompt,
|
||||
CompletionTokens: rawResult.Value.Usage.Completion,
|
||||
TotalTokens: rawResult.Value.Usage.Prompt + rawResult.Value.Usage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &resp}
|
||||
|
||||
} else {
|
||||
log.Debug().Msgf("[GenerateFromMultipleMessagesChatRequest] fnResultsBranch: %+v", results)
|
||||
for i, ss := range results {
|
||||
name, args := ss.name, ss.arguments
|
||||
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: traceID.ID,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
rawFinalResultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: &initialMessage}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
close(rawFinalResultChannel)
|
||||
}()
|
||||
|
||||
finalResultChannel = rawFinalResultChannel
|
||||
completionsChannel = rawCompletionsChannel
|
||||
tokenChannel = rawTokenChannel
|
||||
return
|
||||
}
|
||||
|
||||
func (oais *OpenAIService) handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, args, prompt string) (string, error) {
|
||||
log.Debug().Msgf("[handleQuestion called] nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
json.Unmarshal([]byte(args), &arguments)
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = oais.llmbs.Finetune(*config, prompt, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
return message, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU/GPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
resultChannel, _, err := oais.llmbs.Inference(input.Context, &backend.LLMRequest{
|
||||
Text: prompt,
|
||||
Images: images,
|
||||
RawMessages: input.Messages, // Experimental
|
||||
}, config, false)
|
||||
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference setup error: %s", err.Error())
|
||||
return "", err
|
||||
}
|
||||
|
||||
raw := <-resultChannel
|
||||
if raw.Error != nil {
|
||||
log.Error().Msgf("inference error: %q", raw.Error.Error())
|
||||
return "", err
|
||||
}
|
||||
if raw.Value == nil {
|
||||
log.Warn().Msgf("nil inference response")
|
||||
return "", nil
|
||||
}
|
||||
return oais.llmbs.Finetune(*config, prompt, raw.Value.Response), nil
|
||||
}
|
||||
|
||||
type funcCallResults struct {
|
||||
name string
|
||||
arguments string
|
||||
}
|
||||
|
||||
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
|
||||
|
||||
results := []funcCallResults{}
|
||||
|
||||
// TODO: use generics to avoid this code duplication
|
||||
if multipleResults {
|
||||
ss := []map[string]interface{}{}
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
|
||||
for _, s := range ss {
|
||||
func_name, ok := s["function"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
args, ok := s["arguments"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
} else {
|
||||
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
|
||||
ss := map[string]interface{}{}
|
||||
// This prevent newlines to break JSON parsing for clients
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
if err := json.Unmarshal([]byte(s), &ss); err != nil {
|
||||
log.Error().Msgf("error unmarshalling JSON: %s", err.Error())
|
||||
return results
|
||||
}
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name, ok := ss["function"]
|
||||
if !ok {
|
||||
log.Debug().Msgf("ss[function] is not OK!, llm result: %q", llmresult)
|
||||
return results
|
||||
}
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
if !ok {
|
||||
log.Debug().Msg("ss[arguments] is not OK!")
|
||||
return results
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
log.Debug().Msgf("unexpected func_name: %+v", func_name)
|
||||
return results
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
return results
|
||||
}
|
@ -4,17 +4,21 @@ import (
|
||||
"fmt"
|
||||
"os"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
openaiendpoint "github.com/go-skynet/LocalAI/core/http/endpoints/openai" // TODO: This is dubious. Fix this when splitting assistant api up.
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/assets"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
pkgStartup "github.com/go-skynet/LocalAI/pkg/startup"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.ModelLoader, *config.ApplicationConfig, error) {
|
||||
// (*config.BackendConfigLoader, *model.ModelLoader, *config.ApplicationConfig, error) {
|
||||
func Startup(opts ...config.AppOption) (*core.Application, error) {
|
||||
options := config.NewApplicationConfig(opts...)
|
||||
|
||||
zerolog.SetGlobalLevel(zerolog.InfoLevel)
|
||||
@ -27,68 +31,75 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
|
||||
|
||||
// Make sure directories exists
|
||||
if options.ModelPath == "" {
|
||||
return nil, nil, nil, fmt.Errorf("options.ModelPath cannot be empty")
|
||||
return nil, fmt.Errorf("options.ModelPath cannot be empty")
|
||||
}
|
||||
err := os.MkdirAll(options.ModelPath, 0755)
|
||||
if err != nil {
|
||||
return nil, nil, nil, fmt.Errorf("unable to create ModelPath: %q", err)
|
||||
return nil, fmt.Errorf("unable to create ModelPath: %q", err)
|
||||
}
|
||||
if options.ImageDir != "" {
|
||||
err := os.MkdirAll(options.ImageDir, 0755)
|
||||
if err != nil {
|
||||
return nil, nil, nil, fmt.Errorf("unable to create ImageDir: %q", err)
|
||||
return nil, fmt.Errorf("unable to create ImageDir: %q", err)
|
||||
}
|
||||
}
|
||||
if options.AudioDir != "" {
|
||||
err := os.MkdirAll(options.AudioDir, 0755)
|
||||
if err != nil {
|
||||
return nil, nil, nil, fmt.Errorf("unable to create AudioDir: %q", err)
|
||||
return nil, fmt.Errorf("unable to create AudioDir: %q", err)
|
||||
}
|
||||
}
|
||||
if options.UploadDir != "" {
|
||||
err := os.MkdirAll(options.UploadDir, 0755)
|
||||
if err != nil {
|
||||
return nil, nil, nil, fmt.Errorf("unable to create UploadDir: %q", err)
|
||||
return nil, fmt.Errorf("unable to create UploadDir: %q", err)
|
||||
}
|
||||
}
|
||||
if options.ConfigsDir != "" {
|
||||
err := os.MkdirAll(options.ConfigsDir, 0755)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to create ConfigsDir: %q", err)
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
pkgStartup.PreloadModelsConfigurations(options.ModelLibraryURL, options.ModelPath, options.ModelsURL...)
|
||||
// Load config jsons
|
||||
utils.LoadConfig(options.UploadDir, openaiendpoint.UploadedFilesFile, &openaiendpoint.UploadedFiles)
|
||||
utils.LoadConfig(options.ConfigsDir, openaiendpoint.AssistantsConfigFile, &openaiendpoint.Assistants)
|
||||
utils.LoadConfig(options.ConfigsDir, openaiendpoint.AssistantsFileConfigFile, &openaiendpoint.AssistantFiles)
|
||||
|
||||
cl := config.NewBackendConfigLoader()
|
||||
ml := model.NewModelLoader(options.ModelPath)
|
||||
app := createApplication(options)
|
||||
|
||||
configLoaderOpts := options.ToConfigLoaderOptions()
|
||||
services.PreloadModelsConfigurations(options.ModelLibraryURL, options.ModelPath, options.ModelsURL...)
|
||||
|
||||
if err := cl.LoadBackendConfigsFromPath(options.ModelPath, configLoaderOpts...); err != nil {
|
||||
if err := app.BackendConfigLoader.LoadBackendConfigsFromPath(options.ModelPath, app.ApplicationConfig.ToConfigLoaderOptions()...); err != nil {
|
||||
log.Error().Err(err).Msg("error loading config files")
|
||||
}
|
||||
|
||||
if options.ConfigFile != "" {
|
||||
if err := cl.LoadBackendConfigFile(options.ConfigFile, configLoaderOpts...); err != nil {
|
||||
if err := app.BackendConfigLoader.LoadBackendConfigFile(options.ConfigFile, app.ApplicationConfig.ToConfigLoaderOptions()...); err != nil {
|
||||
log.Error().Err(err).Msg("error loading config file")
|
||||
}
|
||||
}
|
||||
|
||||
if err := cl.Preload(options.ModelPath); err != nil {
|
||||
if err := app.BackendConfigLoader.Preload(options.ModelPath); err != nil {
|
||||
log.Error().Err(err).Msg("error downloading models")
|
||||
}
|
||||
|
||||
if options.PreloadJSONModels != "" {
|
||||
if err := services.ApplyGalleryFromString(options.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
|
||||
return nil, nil, nil, err
|
||||
if err := services.ApplyGalleryFromString(options.ModelPath, options.PreloadJSONModels, app.BackendConfigLoader, options.Galleries); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.PreloadModelsFromPath != "" {
|
||||
if err := services.ApplyGalleryFromFile(options.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
|
||||
return nil, nil, nil, err
|
||||
if err := services.ApplyGalleryFromFile(options.ModelPath, options.PreloadModelsFromPath, app.BackendConfigLoader, options.Galleries); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.Debug {
|
||||
for _, v := range cl.ListBackendConfigs() {
|
||||
cfg, _ := cl.GetBackendConfig(v)
|
||||
for _, v := range app.BackendConfigLoader.ListBackendConfigs() {
|
||||
cfg, _ := app.BackendConfigLoader.GetBackendConfig(v)
|
||||
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
|
||||
}
|
||||
}
|
||||
@ -106,17 +117,17 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
|
||||
go func() {
|
||||
<-options.Context.Done()
|
||||
log.Debug().Msgf("Context canceled, shutting down")
|
||||
ml.StopAllGRPC()
|
||||
app.ModelLoader.StopAllGRPC()
|
||||
}()
|
||||
|
||||
if options.WatchDog {
|
||||
wd := model.NewWatchDog(
|
||||
ml,
|
||||
app.ModelLoader,
|
||||
options.WatchDogBusyTimeout,
|
||||
options.WatchDogIdleTimeout,
|
||||
options.WatchDogBusy,
|
||||
options.WatchDogIdle)
|
||||
ml.SetWatchDog(wd)
|
||||
app.ModelLoader.SetWatchDog(wd)
|
||||
go wd.Run()
|
||||
go func() {
|
||||
<-options.Context.Done()
|
||||
@ -126,5 +137,35 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
|
||||
}
|
||||
|
||||
log.Info().Msg("core/startup process completed!")
|
||||
return cl, ml, options, nil
|
||||
return app, nil
|
||||
}
|
||||
|
||||
// In Lieu of a proper DI framework, this function wires up the Application manually.
|
||||
// This is in core/startup rather than core/state.go to keep package references clean!
|
||||
func createApplication(appConfig *config.ApplicationConfig) *core.Application {
|
||||
app := &core.Application{
|
||||
ApplicationConfig: appConfig,
|
||||
BackendConfigLoader: config.NewBackendConfigLoader(),
|
||||
ModelLoader: model.NewModelLoader(appConfig.ModelPath),
|
||||
}
|
||||
|
||||
var err error
|
||||
|
||||
app.EmbeddingsBackendService = backend.NewEmbeddingsBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
app.ImageGenerationBackendService = backend.NewImageGenerationBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
app.LLMBackendService = backend.NewLLMBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
app.TranscriptionBackendService = backend.NewTranscriptionBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
app.TextToSpeechBackendService = backend.NewTextToSpeechBackendService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
|
||||
app.BackendMonitorService = services.NewBackendMonitorService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
app.GalleryService = services.NewGalleryService(app.ApplicationConfig.ModelPath)
|
||||
app.ListModelsService = services.NewListModelsService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig)
|
||||
app.OpenAIService = services.NewOpenAIService(app.ModelLoader, app.BackendConfigLoader, app.ApplicationConfig, app.LLMBackendService)
|
||||
|
||||
app.LocalAIMetricsService, err = services.NewLocalAIMetricsService()
|
||||
if err != nil {
|
||||
log.Warn().Msg("Unable to initialize LocalAIMetricsService - non-fatal, optional service")
|
||||
}
|
||||
|
||||
return app
|
||||
}
|
||||
|
41
core/state.go
Normal file
41
core/state.go
Normal file
@ -0,0 +1,41 @@
|
||||
package core
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
// TODO: Can I come up with a better name or location for this?
|
||||
// The purpose of this structure is to hold pointers to all initialized services, to make plumbing easy
|
||||
// Perhaps a proper DI system is worth it in the future, but for now keep things simple.
|
||||
type Application struct {
|
||||
|
||||
// Application-Level Config
|
||||
ApplicationConfig *config.ApplicationConfig
|
||||
// ApplicationState *ApplicationState
|
||||
|
||||
// Core Low-Level Services
|
||||
BackendConfigLoader *config.BackendConfigLoader
|
||||
ModelLoader *model.ModelLoader
|
||||
|
||||
// Backend Services
|
||||
EmbeddingsBackendService *backend.EmbeddingsBackendService
|
||||
ImageGenerationBackendService *backend.ImageGenerationBackendService
|
||||
LLMBackendService *backend.LLMBackendService
|
||||
TranscriptionBackendService *backend.TranscriptionBackendService
|
||||
TextToSpeechBackendService *backend.TextToSpeechBackendService
|
||||
|
||||
// LocalAI System Services
|
||||
BackendMonitorService *services.BackendMonitorService
|
||||
GalleryService *services.GalleryService
|
||||
ListModelsService *services.ListModelsService
|
||||
LocalAIMetricsService *services.LocalAIMetricsService
|
||||
OpenAIService *services.OpenAIService
|
||||
}
|
||||
|
||||
// TODO [NEXT PR?]: Break up ApplicationConfig.
|
||||
// Migrate over stuff that is not set via config at all - especially runtime stuff
|
||||
type ApplicationState struct {
|
||||
}
|
@ -0,0 +1,25 @@
|
||||
meta {
|
||||
name: -completions Stream
|
||||
type: http
|
||||
seq: 4
|
||||
}
|
||||
|
||||
post {
|
||||
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/completions
|
||||
body: json
|
||||
auth: none
|
||||
}
|
||||
|
||||
headers {
|
||||
Content-Type: application/json
|
||||
}
|
||||
|
||||
body:json {
|
||||
{
|
||||
"model": "{{DEFAULT_MODEL}}",
|
||||
"prompt": "function downloadFile(string url, string outputPath) {",
|
||||
"max_tokens": 256,
|
||||
"temperature": 0.5,
|
||||
"stream": true
|
||||
}
|
||||
}
|
135
pkg/concurrency/concurrency.go
Normal file
135
pkg/concurrency/concurrency.go
Normal file
@ -0,0 +1,135 @@
|
||||
package concurrency
|
||||
|
||||
import (
|
||||
"sync"
|
||||
)
|
||||
|
||||
// TODO: closeWhenDone bool parameter ::
|
||||
// It currently is experimental, and therefore exists.
|
||||
// Is there ever a situation to use false?
|
||||
|
||||
// This function is used to merge the results of a slice of channels of a specific result type down to a single result channel of a second type.
|
||||
// mappingFn allows the caller to convert from the input type to the output type
|
||||
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
|
||||
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
|
||||
func SliceOfChannelsRawMerger[IndividualResultType any, OutputResultType any](individualResultChannels []<-chan IndividualResultType, outputChannel chan<- OutputResultType, mappingFn func(IndividualResultType) (OutputResultType, error), closeWhenDone bool) *sync.WaitGroup {
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(individualResultChannels))
|
||||
mergingFn := func(c <-chan IndividualResultType) {
|
||||
for r := range c {
|
||||
mr, err := mappingFn(r)
|
||||
if err == nil {
|
||||
outputChannel <- mr
|
||||
}
|
||||
}
|
||||
wg.Done()
|
||||
}
|
||||
for _, irc := range individualResultChannels {
|
||||
go mergingFn(irc)
|
||||
}
|
||||
if closeWhenDone {
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(outputChannel)
|
||||
}()
|
||||
}
|
||||
|
||||
return &wg
|
||||
}
|
||||
|
||||
// This function is used to merge the results of a slice of channels of a specific result type down to a single result channel of THE SAME TYPE.
|
||||
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
|
||||
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
|
||||
func SliceOfChannelsRawMergerWithoutMapping[ResultType any](individualResultsChannels []<-chan ResultType, outputChannel chan<- ResultType, closeWhenDone bool) *sync.WaitGroup {
|
||||
return SliceOfChannelsRawMerger(individualResultsChannels, outputChannel, func(v ResultType) (ResultType, error) { return v, nil }, closeWhenDone)
|
||||
}
|
||||
|
||||
// This function is used to merge the results of a slice of channels of a specific result type down to a single succcess result channel of a second type, and an error channel
|
||||
// mappingFn allows the caller to convert from the input type to the output type
|
||||
// This variant is designed to be aware of concurrency.ErrorOr[T], splitting successes from failures.
|
||||
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
|
||||
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
|
||||
func SliceOfChannelsMergerWithErrors[IndividualResultType any, OutputResultType any](individualResultChannels []<-chan ErrorOr[IndividualResultType], successChannel chan<- OutputResultType, errorChannel chan<- error, mappingFn func(IndividualResultType) (OutputResultType, error), closeWhenDone bool) *sync.WaitGroup {
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(individualResultChannels))
|
||||
mergingFn := func(c <-chan ErrorOr[IndividualResultType]) {
|
||||
for r := range c {
|
||||
if r.Error != nil {
|
||||
errorChannel <- r.Error
|
||||
} else {
|
||||
mv, err := mappingFn(r.Value)
|
||||
if err != nil {
|
||||
errorChannel <- err
|
||||
} else {
|
||||
successChannel <- mv
|
||||
}
|
||||
}
|
||||
}
|
||||
wg.Done()
|
||||
}
|
||||
for _, irc := range individualResultChannels {
|
||||
go mergingFn(irc)
|
||||
}
|
||||
if closeWhenDone {
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(successChannel)
|
||||
close(errorChannel)
|
||||
}()
|
||||
}
|
||||
return &wg
|
||||
}
|
||||
|
||||
// This function is used to reduce down the results of a slice of channels of a specific result type down to a single result value of a second type.
|
||||
// reducerFn allows the caller to convert from the input type to the output type
|
||||
// if closeWhenDone is set to true, the output channel will be closed when all individual result channels of the slice have been closed - otherwise it will be left open for future use.
|
||||
// The same WaitGroup used to trigger that optional closing is returned for any other synchronization purposes.
|
||||
func SliceOfChannelsReducer[InputResultType any, OutputResultType any](individualResultsChannels []<-chan InputResultType, outputChannel chan<- OutputResultType,
|
||||
reducerFn func(iv InputResultType, ov OutputResultType) OutputResultType, initialValue OutputResultType, closeWhenDone bool) (wg *sync.WaitGroup) {
|
||||
wg = &sync.WaitGroup{}
|
||||
wg.Add(len(individualResultsChannels))
|
||||
reduceLock := sync.Mutex{}
|
||||
reducingFn := func(c <-chan InputResultType) {
|
||||
for iv := range c {
|
||||
reduceLock.Lock()
|
||||
initialValue = reducerFn(iv, initialValue)
|
||||
reduceLock.Unlock()
|
||||
}
|
||||
wg.Done()
|
||||
}
|
||||
for _, irc := range individualResultsChannels {
|
||||
go reducingFn(irc)
|
||||
}
|
||||
go func() {
|
||||
wg.Wait()
|
||||
outputChannel <- initialValue
|
||||
if closeWhenDone {
|
||||
close(outputChannel)
|
||||
}
|
||||
}()
|
||||
return wg
|
||||
}
|
||||
|
||||
// This function is primarily designed to be used in combination with the above utility functions.
|
||||
// A slice of input result channels of a specific type is provided, along with a function to map those values to another type
|
||||
// A slice of output result channels is returned, where each value is mapped as it comes in.
|
||||
// The order of the slice will be retained.
|
||||
func SliceOfChannelsTransformer[InputResultType any, OutputResultType any](inputChanels []<-chan InputResultType, mappingFn func(v InputResultType) OutputResultType) (outputChannels []<-chan OutputResultType) {
|
||||
rawOutputChannels := make([]<-chan OutputResultType, len(inputChanels))
|
||||
|
||||
transformingFn := func(ic <-chan InputResultType, oc chan OutputResultType) {
|
||||
for iv := range ic {
|
||||
oc <- mappingFn(iv)
|
||||
}
|
||||
close(oc)
|
||||
}
|
||||
|
||||
for ci, c := range inputChanels {
|
||||
roc := make(chan OutputResultType)
|
||||
go transformingFn(c, roc)
|
||||
rawOutputChannels[ci] = roc
|
||||
}
|
||||
|
||||
outputChannels = rawOutputChannels
|
||||
return
|
||||
}
|
101
pkg/concurrency/concurrency_test.go
Normal file
101
pkg/concurrency/concurrency_test.go
Normal file
@ -0,0 +1,101 @@
|
||||
package concurrency_test
|
||||
|
||||
// TODO: noramlly, these go in utils_tests, right? Why does this cause problems only in pkg/utils?
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"slices"
|
||||
|
||||
. "github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
)
|
||||
|
||||
var _ = Describe("utils/concurrency tests", func() {
|
||||
It("SliceOfChannelsReducer works", func() {
|
||||
individualResultsChannels := []<-chan int{}
|
||||
initialValue := 0
|
||||
for i := 0; i < 3; i++ {
|
||||
c := make(chan int)
|
||||
go func(i int, c chan int) {
|
||||
for ii := 1; ii < 4; ii++ {
|
||||
c <- (i * ii)
|
||||
}
|
||||
close(c)
|
||||
}(i, c)
|
||||
individualResultsChannels = append(individualResultsChannels, c)
|
||||
}
|
||||
Expect(len(individualResultsChannels)).To(Equal(3))
|
||||
finalResultChannel := make(chan int)
|
||||
wg := SliceOfChannelsReducer[int, int](individualResultsChannels, finalResultChannel, func(input int, val int) int {
|
||||
return val + input
|
||||
}, initialValue, true)
|
||||
|
||||
Expect(wg).ToNot(BeNil())
|
||||
|
||||
result := <-finalResultChannel
|
||||
|
||||
Expect(result).ToNot(Equal(0))
|
||||
Expect(result).To(Equal(18))
|
||||
})
|
||||
|
||||
It("SliceOfChannelsRawMergerWithoutMapping works", func() {
|
||||
individualResultsChannels := []<-chan int{}
|
||||
for i := 0; i < 3; i++ {
|
||||
c := make(chan int)
|
||||
go func(i int, c chan int) {
|
||||
for ii := 1; ii < 4; ii++ {
|
||||
c <- (i * ii)
|
||||
}
|
||||
close(c)
|
||||
}(i, c)
|
||||
individualResultsChannels = append(individualResultsChannels, c)
|
||||
}
|
||||
Expect(len(individualResultsChannels)).To(Equal(3))
|
||||
outputChannel := make(chan int)
|
||||
wg := SliceOfChannelsRawMergerWithoutMapping(individualResultsChannels, outputChannel, true)
|
||||
Expect(wg).ToNot(BeNil())
|
||||
outputSlice := []int{}
|
||||
for v := range outputChannel {
|
||||
outputSlice = append(outputSlice, v)
|
||||
}
|
||||
Expect(len(outputSlice)).To(Equal(9))
|
||||
slices.Sort(outputSlice)
|
||||
Expect(outputSlice[0]).To(BeZero())
|
||||
Expect(outputSlice[3]).To(Equal(1))
|
||||
Expect(outputSlice[8]).To(Equal(6))
|
||||
})
|
||||
|
||||
It("SliceOfChannelsTransformer works", func() {
|
||||
individualResultsChannels := []<-chan int{}
|
||||
for i := 0; i < 3; i++ {
|
||||
c := make(chan int)
|
||||
go func(i int, c chan int) {
|
||||
for ii := 1; ii < 4; ii++ {
|
||||
c <- (i * ii)
|
||||
}
|
||||
close(c)
|
||||
}(i, c)
|
||||
individualResultsChannels = append(individualResultsChannels, c)
|
||||
}
|
||||
Expect(len(individualResultsChannels)).To(Equal(3))
|
||||
mappingFn := func(i int) string {
|
||||
return fmt.Sprintf("$%d", i)
|
||||
}
|
||||
|
||||
outputChannels := SliceOfChannelsTransformer(individualResultsChannels, mappingFn)
|
||||
Expect(len(outputChannels)).To(Equal(3))
|
||||
rSlice := []string{}
|
||||
for ii := 1; ii < 4; ii++ {
|
||||
for i := 0; i < 3; i++ {
|
||||
res := <-outputChannels[i]
|
||||
rSlice = append(rSlice, res)
|
||||
}
|
||||
}
|
||||
slices.Sort(rSlice)
|
||||
Expect(rSlice[0]).To(Equal("$0"))
|
||||
Expect(rSlice[3]).To(Equal("$1"))
|
||||
Expect(rSlice[8]).To(Equal("$6"))
|
||||
})
|
||||
})
|
6
pkg/concurrency/types.go
Normal file
6
pkg/concurrency/types.go
Normal file
@ -0,0 +1,6 @@
|
||||
package concurrency
|
||||
|
||||
type ErrorOr[T any] struct {
|
||||
Value T
|
||||
Error error
|
||||
}
|
@ -41,7 +41,7 @@ type Backend interface {
|
||||
PredictStream(ctx context.Context, in *pb.PredictOptions, f func(s []byte), opts ...grpc.CallOption) error
|
||||
GenerateImage(ctx context.Context, in *pb.GenerateImageRequest, opts ...grpc.CallOption) (*pb.Result, error)
|
||||
TTS(ctx context.Context, in *pb.TTSRequest, opts ...grpc.CallOption) (*pb.Result, error)
|
||||
AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.Result, error)
|
||||
AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.TranscriptionResult, error)
|
||||
TokenizeString(ctx context.Context, in *pb.PredictOptions, opts ...grpc.CallOption) (*pb.TokenizationResponse, error)
|
||||
Status(ctx context.Context) (*pb.StatusResponse, error)
|
||||
|
||||
|
@ -53,8 +53,8 @@ func (llm *Base) GenerateImage(*pb.GenerateImageRequest) error {
|
||||
return fmt.Errorf("unimplemented")
|
||||
}
|
||||
|
||||
func (llm *Base) AudioTranscription(*pb.TranscriptRequest) (schema.Result, error) {
|
||||
return schema.Result{}, fmt.Errorf("unimplemented")
|
||||
func (llm *Base) AudioTranscription(*pb.TranscriptRequest) (schema.TranscriptionResult, error) {
|
||||
return schema.TranscriptionResult{}, fmt.Errorf("unimplemented")
|
||||
}
|
||||
|
||||
func (llm *Base) TTS(*pb.TTSRequest) error {
|
||||
|
@ -210,7 +210,7 @@ func (c *Client) TTS(ctx context.Context, in *pb.TTSRequest, opts ...grpc.CallOp
|
||||
return client.TTS(ctx, in, opts...)
|
||||
}
|
||||
|
||||
func (c *Client) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.Result, error) {
|
||||
func (c *Client) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.TranscriptionResult, error) {
|
||||
if !c.parallel {
|
||||
c.opMutex.Lock()
|
||||
defer c.opMutex.Unlock()
|
||||
@ -231,7 +231,7 @@ func (c *Client) AudioTranscription(ctx context.Context, in *pb.TranscriptReques
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
tresult := &schema.Result{}
|
||||
tresult := &schema.TranscriptionResult{}
|
||||
for _, s := range res.Segments {
|
||||
tks := []int{}
|
||||
for _, t := range s.Tokens {
|
||||
|
@ -53,12 +53,12 @@ func (e *embedBackend) TTS(ctx context.Context, in *pb.TTSRequest, opts ...grpc.
|
||||
return e.s.TTS(ctx, in)
|
||||
}
|
||||
|
||||
func (e *embedBackend) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.Result, error) {
|
||||
func (e *embedBackend) AudioTranscription(ctx context.Context, in *pb.TranscriptRequest, opts ...grpc.CallOption) (*schema.TranscriptionResult, error) {
|
||||
r, err := e.s.AudioTranscription(ctx, in)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
tr := &schema.Result{}
|
||||
tr := &schema.TranscriptionResult{}
|
||||
for _, s := range r.Segments {
|
||||
var tks []int
|
||||
for _, t := range s.Tokens {
|
||||
|
@ -15,7 +15,7 @@ type LLM interface {
|
||||
Load(*pb.ModelOptions) error
|
||||
Embeddings(*pb.PredictOptions) ([]float32, error)
|
||||
GenerateImage(*pb.GenerateImageRequest) error
|
||||
AudioTranscription(*pb.TranscriptRequest) (schema.Result, error)
|
||||
AudioTranscription(*pb.TranscriptRequest) (schema.TranscriptionResult, error)
|
||||
TTS(*pb.TTSRequest) error
|
||||
TokenizeString(*pb.PredictOptions) (pb.TokenizationResponse, error)
|
||||
Status() (pb.StatusResponse, error)
|
||||
|
@ -81,7 +81,7 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
|
||||
if _, err := os.Stat(uri); err == nil {
|
||||
serverAddress, err := getFreeAddress()
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed allocating free ports: %s", err.Error())
|
||||
return "", fmt.Errorf("%s failed allocating free ports: %s", backend, err.Error())
|
||||
}
|
||||
// Make sure the process is executable
|
||||
if err := ml.startProcess(uri, o.model, serverAddress); err != nil {
|
||||
@ -134,7 +134,7 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
|
||||
|
||||
if !ready {
|
||||
log.Debug().Msgf("GRPC Service NOT ready")
|
||||
return "", fmt.Errorf("grpc service not ready")
|
||||
return "", fmt.Errorf("%s grpc service not ready", backend)
|
||||
}
|
||||
|
||||
options := *o.gRPCOptions
|
||||
@ -145,10 +145,10 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
|
||||
|
||||
res, err := client.GRPC(o.parallelRequests, ml.wd).LoadModel(o.context, &options)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("could not load model: %w", err)
|
||||
return "", fmt.Errorf("\"%s\" could not load model: %w", backend, err)
|
||||
}
|
||||
if !res.Success {
|
||||
return "", fmt.Errorf("could not load model (no success): %s", res.Message)
|
||||
return "", fmt.Errorf("\"%s\" could not load model (no success): %s", backend, res.Message)
|
||||
}
|
||||
|
||||
return client, nil
|
||||
|
@ -1,85 +0,0 @@
|
||||
package startup
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/embedded"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
// PreloadModelsConfigurations will preload models from the given list of URLs
|
||||
// It will download the model if it is not already present in the model path
|
||||
// It will also try to resolve if the model is an embedded model YAML configuration
|
||||
func PreloadModelsConfigurations(modelLibraryURL string, modelPath string, models ...string) {
|
||||
for _, url := range models {
|
||||
|
||||
// As a best effort, try to resolve the model from the remote library
|
||||
// if it's not resolved we try with the other method below
|
||||
if modelLibraryURL != "" {
|
||||
lib, err := embedded.GetRemoteLibraryShorteners(modelLibraryURL)
|
||||
if err == nil {
|
||||
if lib[url] != "" {
|
||||
log.Debug().Msgf("[startup] model configuration is defined remotely: %s (%s)", url, lib[url])
|
||||
url = lib[url]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
url = embedded.ModelShortURL(url)
|
||||
switch {
|
||||
case embedded.ExistsInModelsLibrary(url):
|
||||
modelYAML, err := embedded.ResolveContent(url)
|
||||
// If we resolve something, just save it to disk and continue
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error resolving model content")
|
||||
continue
|
||||
}
|
||||
|
||||
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
|
||||
md5Name := utils.MD5(url)
|
||||
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
|
||||
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
|
||||
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error writing model definition")
|
||||
}
|
||||
case downloader.LooksLikeURL(url):
|
||||
log.Debug().Msgf("[startup] resolved model to download: %s", url)
|
||||
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(url)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
|
||||
err := downloader.DownloadFile(url, modelDefinitionFilePath, "", func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
})
|
||||
if err != nil {
|
||||
log.Error().Err(err).Str("url", url).Str("filepath", modelDefinitionFilePath).Msg("error downloading model")
|
||||
}
|
||||
}
|
||||
default:
|
||||
if _, err := os.Stat(url); err == nil {
|
||||
log.Debug().Msgf("[startup] resolved local model: %s", url)
|
||||
// copy to modelPath
|
||||
md5Name := utils.MD5(url)
|
||||
|
||||
modelYAML, err := os.ReadFile(url)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Str("filepath", url).Msg("error reading model definition")
|
||||
continue
|
||||
}
|
||||
|
||||
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
|
||||
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
|
||||
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error loading model: %s")
|
||||
}
|
||||
} else {
|
||||
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
50
pkg/utils/base64.go
Normal file
50
pkg/utils/base64.go
Normal file
@ -0,0 +1,50 @@
|
||||
package utils
|
||||
|
||||
import (
|
||||
"encoding/base64"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
||||
var base64DownloadClient http.Client = http.Client{
|
||||
Timeout: 30 * time.Second,
|
||||
}
|
||||
|
||||
// this function check if the string is an URL, if it's an URL downloads the image in memory
|
||||
// encodes it in base64 and returns the base64 string
|
||||
|
||||
// This may look weird down in pkg/utils while it is currently only used in core/config
|
||||
//
|
||||
// but I believe it may be useful for MQTT as well in the near future, so I'm
|
||||
// extracting it while I'm thinking of it.
|
||||
func GetImageURLAsBase64(s string) (string, error) {
|
||||
if strings.HasPrefix(s, "http") {
|
||||
// download the image
|
||||
resp, err := base64DownloadClient.Get(s)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// read the image data into memory
|
||||
data, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// encode the image data in base64
|
||||
encoded := base64.StdEncoding.EncodeToString(data)
|
||||
|
||||
// return the base64 string
|
||||
return encoded, nil
|
||||
}
|
||||
|
||||
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
|
||||
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
|
||||
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
|
||||
}
|
||||
return "", fmt.Errorf("not valid string")
|
||||
}
|
Loading…
Reference in New Issue
Block a user