Merge branch 'master' into default_miro

This commit is contained in:
Ettore Di Giacinto 2024-09-17 12:24:39 +02:00 committed by GitHub
commit 3a1727a4fe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
141 changed files with 2956 additions and 1498 deletions

View File

@ -32,18 +32,22 @@ config_remote() {
}
# Setup special .ssh files
#
# Prints out lines of text to make things pretty
# Param 1: bash array, filenames relative to the customization directory that should be copied to ~/.ssh
setup_ssh() {
echo "starting ~/.ssh directory setup..."
mkdir -p "${HOME}.ssh"
chmod 0700 "${HOME}/.ssh"
echo "-----"
local files=("$@")
for file in "${files[@]}"; then
for file in "${files[@]}" ; do
local cfile="/devcontainer-customization/${file}"
local hfile="~/.ssh/${file}"
local hfile="${HOME}/.ssh/${file}"
if [ ! -f "${hfile}" ]; then
echo "copying ${file}"
echo "copying \"${file}\""
cp "${cfile}" "${hfile}"
chmod 600 "${hfile}"
fi
done
ls ~/.ssh
echo "~/.ssh directory setup complete!"
}

View File

@ -56,7 +56,7 @@ jobs:
rm -rfv ${{ matrix.variable }}_message.txt
rm -rfv ${{ matrix.variable }}_commit.txt
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@ -17,7 +17,7 @@ jobs:
run: |
bash .github/bump_docs.sh ${{ matrix.repository }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@ -36,7 +36,7 @@ jobs:
sudo chmod 777 /hf_cache
bash .github/checksum_checker.sh gallery/index.yaml
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@ -294,7 +294,7 @@ jobs:
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export SKIP_GRPC_BACKEND=backend-assets/grpc/whisper
make dist
- uses: actions/upload-artifact@v4
with:
@ -327,7 +327,7 @@ jobs:
cache: false
- name: Dependencies
run: |
brew install protobuf grpc
brew install protobuf grpc libomp llvm
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Build
@ -336,7 +336,7 @@ jobs:
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export CC=/opt/homebrew/opt/llvm/bin/clang
make dist
- uses: actions/upload-artifact@v4
with:

View File

@ -18,7 +18,7 @@ jobs:
if: ${{ github.actor != 'dependabot[bot]' }}
- name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@master
uses: securego/gosec@v2.21.2
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'

View File

@ -214,12 +214,13 @@ jobs:
run: go version
- name: Dependencies
run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export CC=/opt/homebrew/opt/llvm/bin/clang
# Used to run the newer GNUMake version from brew that supports --output-sync
export PATH="/opt/homebrew/opt/make/libexec/gnubin:$PATH"
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test

View File

@ -25,7 +25,7 @@ jobs:
run: |
make protogen-go swagger
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@ -13,7 +13,7 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \
@ -263,14 +263,20 @@ EOT
# In most cases, builder is the image you should be using - however, this can save build time if one just needs to copy backend-assets/grpc/stablediffusion and nothing else.
FROM builder-base AS builder-sd
COPY . .
COPY .git .
# stablediffusion does not tolerate a newer version of abseil, copy only over enough elements to build it
COPY Makefile .
COPY go.mod .
COPY go.sum .
COPY backend/backend.proto ./backend/backend.proto
COPY backend/go/image/stablediffusion ./backend/go/image/stablediffusion
COPY pkg/grpc ./pkg/grpc
COPY pkg/stablediffusion ./pkg/stablediffusion
RUN git init
RUN make sources/go-stable-diffusion
RUN touch prepare-sources
RUN make prepare
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
# Actually build the backend
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make backend-assets/grpc/stablediffusion
###################################
###################################
@ -285,8 +291,20 @@ COPY --from=grpc /opt/grpc /usr/local
# Rebuild with defaults backends
WORKDIR /build
COPY . .
COPY .git .
RUN make prepare
## Build the binary
RUN make build
## If it's CUDA, we want to skip some of the llama-compat backends to save space
## We only leave the most CPU-optimized variant and the fallback for the cublas build
## (both will use CUDA for the actual computation)
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
else \
make build; \
fi
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
@ -400,9 +418,6 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAG
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers-musicgen \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama1" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \

View File

@ -8,7 +8,7 @@ DETECT_LIBS?=true
# llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=2f3c1466ff46a2413b0e363a5005c46538186ee6
CPPLLAMA_VERSION?=23e0d70bacaaca1429d365a44aa9e7434f17823b
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
@ -16,7 +16,7 @@ RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
WHISPER_CPP_VERSION?=d65786ea540a5aef21f67cacfa6f134097727780
WHISPER_CPP_VERSION?=049b3a0e53c8a8e4c4576c06a1a4fccf0063a73f
# bert.cpp version
BERT_REPO?=https://github.com/go-skynet/go-bert.cpp
@ -534,10 +534,10 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
@ -571,14 +571,6 @@ diffusers-protogen:
diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: exllama-protogen
exllama-protogen:
$(MAKE) -C backend/python/exllama protogen
.PHONY: exllama-protogen-clean
exllama-protogen-clean:
$(MAKE) -C backend/python/exllama protogen-clean
.PHONY: exllama2-protogen
exllama2-protogen:
$(MAKE) -C backend/python/exllama2 protogen
@ -675,7 +667,6 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/openvoice
$(MAKE) -C backend/python/exllama
$(MAKE) -C backend/python/exllama2
prepare-test-extra: protogen-python
@ -846,7 +837,7 @@ endif
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="$(CURDIR)/sources/whisper.cpp/include:$(CURDIR)/sources/whisper.cpp/ggml/include" LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/whisper
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/whisper
endif

View File

@ -40,7 +40,7 @@
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/go-skynet/LocalAI/tree/master/examples/)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
@ -72,6 +72,7 @@ docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723
- June 2024: 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
- June 2024: Support for models from OCI registries: https://github.com/mudler/LocalAI/pull/2628

View File

@ -1,6 +1,6 @@
name: stablediffusion
parameters:
model: runwayml/stable-diffusion-v1-5
model: Lykon/dreamshaper-8
backend: diffusers
step: 25
f16: true

View File

@ -16,6 +16,7 @@ service Backend {
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
rpc TTS(TTSRequest) returns (Result) {}
rpc SoundGeneration(SoundGenerationRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
@ -270,6 +271,17 @@ message TTSRequest {
optional string language = 5;
}
message SoundGenerationRequest {
string text = 1;
string model = 2;
string dst = 3;
optional float duration = 4;
optional float temperature = 5;
optional bool sample = 6;
optional string src = 7;
optional int32 src_divisor = 8;
}
message TokenizationResponse {
int32 length = 1;
repeated int32 tokens = 2;

View File

@ -13,15 +13,15 @@
#include <getopt.h>
#include "clip.h"
#include "llava.h"
#include "log.h"
#include "stb_image.h"
#include "common.h"
#include "json.hpp"
#include "llama.h"
#include "grammar-parser.h"
#include "backend.pb.h"
#include "backend.grpc.pb.h"
#include "utils.hpp"
#include "sampling.h"
// include std::regex
#include <cstddef>
#include <thread>
@ -203,8 +203,8 @@ struct llama_client_slot
std::string stopping_word;
// sampling
struct llama_sampling_params sparams;
llama_sampling_context *ctx_sampling = nullptr;
struct gpt_sampler_params sparams;
gpt_sampler *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
@ -449,7 +449,7 @@ struct llama_server_context
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
LOG_ERR("unable to load clip model: %s", params.mmproj.c_str());
return false;
}
@ -463,7 +463,7 @@ struct llama_server_context
ctx = llama_init.context;
if (model == nullptr)
{
LOG_ERROR("unable to load model", {{"model", params.model}});
LOG_ERR("unable to load model: %s", params.model.c_str());
return false;
}
@ -471,7 +471,7 @@ struct llama_server_context
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) {
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx);
llama_free_model(model);
return false;
@ -490,7 +490,7 @@ struct llama_server_context
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
LOG_ERR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", __func__);
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
}
}
@ -619,7 +619,7 @@ struct llama_server_context
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
llama_sampling_params default_sparams;
gpt_sampler_params default_sparams;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
@ -628,7 +628,7 @@ struct llama_server_context
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
@ -641,7 +641,7 @@ struct llama_server_context
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.seed = json_value(data, "seed", default_sparams.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
@ -665,6 +665,7 @@ struct llama_server_context
slot->params.input_prefix = "";
}
if (data.count("input_suffix") != 0)
{
slot->params.input_suffix = data["input_suffix"];
@ -683,6 +684,10 @@ struct llama_server_context
slot->prompt = "";
}
if (json_value(data, "ignore_eos", false)) {
slot->sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
}
/*
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
@ -718,14 +723,10 @@ struct llama_server_context
slot->sparams.use_penalty_prompt_tokens = true;
}
}
*/
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
{
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array())
{
@ -753,7 +754,7 @@ struct llama_server_context
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias[tok] = bias;
slot->sparams.logit_bias.push_back({tok, bias});
}
}
else if (el[0].is_string())
@ -761,7 +762,7 @@ struct llama_server_context
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias[tok] = bias;
slot->sparams.logit_bias.push_back({tok, bias});
}
}
}
@ -782,24 +783,22 @@ struct llama_server_context
}
}
const auto &samplers_sequence = data.find("samplers");
if (samplers_sequence != data.end() && samplers_sequence->is_array())
{
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
std::vector<std::string> sampler_names;
for (const auto &sampler_name : *samplers_sequence)
{
if (sampler_name.is_string())
{
sampler_names.emplace_back(sampler_name);
for (const auto & name : *samplers) {
if (name.is_string()) {
sampler_names.emplace_back(name);
}
}
slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
slot->sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
}
else
{
slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
slot->sparams.samplers = default_sparams.samplers;
}
if (multimodal)
{
const auto &images_data = data.find("image_data");
@ -814,10 +813,11 @@ struct llama_server_context
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_ERROR("failed to load image", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
LOG_ERR("%s: failed to load image, slot_id: %d, img_sl_id: %d",
__func__,
slot->id,
img_sl.id
);
return false;
}
LOG_VERBOSE("image loaded", {
@ -855,12 +855,12 @@ struct llama_server_context
}
}
if (!found) {
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
LOG("ERROR: Image with id: %i, not found.\n", img_id);
slot->images.clear();
return false;
}
} catch (const std::invalid_argument& e) {
LOG_TEE("Invalid image number id in prompt\n");
LOG("Invalid image number id in prompt\n");
slot->images.clear();
return false;
}
@ -875,10 +875,10 @@ struct llama_server_context
if (slot->ctx_sampling != nullptr)
{
llama_sampling_free(slot->ctx_sampling);
gpt_sampler_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->ctx_sampling = gpt_sampler_init(model, slot->sparams);
//llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@ -888,7 +888,7 @@ struct llama_server_context
{"task_id", slot->task_id},
});
LOG_TEE("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());
// LOG("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());
return true;
}
@ -928,7 +928,7 @@ struct llama_server_context
};
if (llama_decode(ctx, batch_view) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
LOG("%s: llama_decode() failed\n", __func__);
return;
}
}
@ -940,7 +940,7 @@ struct llama_server_context
}
}
LOG_TEE("system prompt updated\n");
LOG("system prompt updated\n");
system_need_update = false;
}
@ -1006,11 +1006,13 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
/*
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
*/
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
@ -1119,8 +1121,8 @@ struct llama_server_context
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG("Error processing the given image");
return false;
}
@ -1132,7 +1134,7 @@ struct llama_server_context
void send_error(task_server& task, const std::string &error)
{
LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
LOG("task %i - error: %s\n", task.id, error.c_str());
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@ -1144,13 +1146,11 @@ struct llama_server_context
json get_formated_generation(llama_client_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
for (const auto &sampler_type : slot.sparams.samplers_sequence)
std::vector<std::string> samplers;
samplers.reserve(slot.sparams.samplers.size());
for (const auto & sampler : slot.sparams.samplers)
{
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
samplers.emplace_back(gpt_sampler_type_to_str(sampler));
}
return json {
@ -1165,13 +1165,11 @@ struct llama_server_context
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@ -1179,13 +1177,13 @@ struct llama_server_context
{"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict},
{"n_keep", params.n_keep},
{"ignore_eos", ignore_eos},
{"ignore_eos", slot.sparams.ignore_eos},
{"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias},
// {"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers_sequence}
{"samplers", samplers}
};
}
@ -1375,7 +1373,7 @@ struct llama_server_context
};
if (llama_decode(ctx, batch_view))
{
LOG_TEE("%s : failed to eval\n", __func__);
LOG("%s : failed to eval\n", __func__);
return false;
}
}
@ -1393,7 +1391,7 @@ struct llama_server_context
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
if (llama_decode(ctx, batch_img))
{
LOG_TEE("%s : failed to eval image\n", __func__);
LOG("%s : failed to eval image\n", __func__);
return false;
}
slot.n_past += n_eval;
@ -1576,7 +1574,7 @@ struct llama_server_context
slot.n_past = 0;
slot.truncated = false;
slot.has_next_token = true;
LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
LOG("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
continue;
// END LOCALAI changes
@ -1714,7 +1712,7 @@ struct llama_server_context
if (!slot.params.cache_prompt)
{
llama_sampling_reset(slot.ctx_sampling);
gpt_sampler_reset(slot.ctx_sampling);
slot.n_past = 0;
slot.n_past_se = 0;
@ -1726,7 +1724,7 @@ struct llama_server_context
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
gpt_sampler_accept(slot.ctx_sampling, token, false);
}
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
@ -1824,10 +1822,11 @@ struct llama_server_context
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERROR("failed processing images", {
"slot_id", slot.id,
"task_id", slot.task_id,
});
LOG_ERR("%s: failed processing images Slot id : %d, Task id: %d",
__func__,
slot.id,
slot.task_id
);
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
@ -1867,10 +1866,10 @@ struct llama_server_context
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
LOG("\n");
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
@ -1880,7 +1879,7 @@ struct llama_server_context
slot.ga_i += slot.ga_w / slot.ga_n;
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
@ -1905,11 +1904,11 @@ struct llama_server_context
if (n_batch == 1 || ret < 0)
{
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
LOG("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return false;
}
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
LOG("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
@ -1934,9 +1933,9 @@ struct llama_server_context
}
completion_token_output result;
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
const llama_token id = gpt_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
gpt_sampler_accept(slot.ctx_sampling, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1)
@ -1946,19 +1945,14 @@ struct llama_server_context
metrics.on_prompt_eval(slot);
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const auto * cur_p = gpt_sampler_get_candidates(slot.ctx_sampling);
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0)
{
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
}
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
result.probs.push_back({
cur_p->data[i].id,
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
});
}
if (!process_token(result, slot))
@ -2210,7 +2204,7 @@ static void params_parse(const backend::ModelOptions* request,
params.model_alias = request->modelfile();
params.n_ctx = request->contextsize();
//params.memory_f16 = request->f16memory();
params.n_threads = request->threads();
params.cpuparams.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch();
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1

View File

@ -0,0 +1,13 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 342042ff..224db9b5 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -2419,7 +2419,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
+ patches_data[i] = i;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);

View File

@ -1,5 +1,12 @@
#!/bin/bash
## Patches
## Apply patches from the `patches` directory
for patch in $(ls patches); do
echo "Applying patch $patch"
patch -d llama.cpp/ -p1 < patches/$patch
done
cp -r CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv json.hpp llama.cpp/examples/grpc-server/

View File

@ -481,30 +481,3 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
return ret;
}
//
// random string / id
//
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}

View File

@ -1,104 +0,0 @@
package main
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/mudler/LocalAI/core/schema"
)
func ffmpegCommand(args []string) (string, error) {
cmd := exec.Command("ffmpeg", args...) // Constrain this to ffmpeg to permit security scanner to see that the command is safe.
cmd.Env = os.Environ()
out, err := cmd.CombinedOutput()
return string(out), err
}
// AudioToWav converts audio to wav for transcribe.
// TODO: use https://github.com/mccoyst/ogg?
func audioToWav(src, dst string) error {
commandArgs := []string{"-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
out, err := ffmpegCommand(commandArgs)
if err != nil {
return fmt.Errorf("error: %w out: %s", err, out)
}
return nil
}
func Transcript(model whisper.Model, audiopath, language string, translate bool, threads uint) (schema.TranscriptionResult, error) {
res := schema.TranscriptionResult{}
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return res, err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := audioToWav(audiopath, convertedPath); err != nil {
return res, err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return res, err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return res, err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := model.NewContext()
if err != nil {
return res, err
}
context.SetThreads(threads)
if language != "" {
context.SetLanguage(language)
} else {
context.SetLanguage("auto")
}
if translate {
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil); err != nil {
return res, err
}
for {
s, err := context.NextSegment()
if err != nil {
break
}
var tokens []int
for _, t := range s.Tokens {
tokens = append(tokens, t.Id)
}
segment := schema.Segment{Id: s.Num, Text: s.Text, Start: s.Start, End: s.End, Tokens: tokens}
res.Segments = append(res.Segments, segment)
res.Text += s.Text
}
return res, nil
}

View File

@ -1,26 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Whisper struct {
base.SingleThread
whisper whisper.Model
}
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.TranscriptionResult, error) {
return Transcript(sd.whisper, opts.Dst, opts.Language, opts.Translate, uint(opts.Threads))
}

View File

@ -0,0 +1,105 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"os"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/utils"
)
type Whisper struct {
base.SingleThread
whisper whisper.Model
}
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (pb.TranscriptResult, error) {
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return pb.TranscriptResult{}, err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := utils.AudioToWav(opts.Dst, convertedPath); err != nil {
return pb.TranscriptResult{}, err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return pb.TranscriptResult{}, err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return pb.TranscriptResult{}, err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := sd.whisper.NewContext()
if err != nil {
return pb.TranscriptResult{}, err
}
context.SetThreads(uint(opts.Threads))
if opts.Language != "" {
context.SetLanguage(opts.Language)
} else {
context.SetLanguage("auto")
}
if opts.Translate {
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil); err != nil {
return pb.TranscriptResult{}, err
}
segments := []*pb.TranscriptSegment{}
text := ""
for {
s, err := context.NextSegment()
if err != nil {
break
}
var tokens []int32
for _, t := range s.Tokens {
tokens = append(tokens, int32(t.Id))
}
segment := &pb.TranscriptSegment{Id: int32(s.Num), Text: s.Text, Start: int64(s.Start), End: int64(s.End), Tokens: tokens}
segments = append(segments, segment)
text += s.Text
}
return pb.TranscriptResult{
Segments: segments,
Text: text,
}, nil
}

View File

@ -2,4 +2,4 @@
intel-extension-for-pytorch
torch
optimum[openvino]
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@ -1,6 +1,6 @@
accelerate
auto-gptq==0.7.1
grpcio==1.65.4
grpcio==1.66.1
protobuf
certifi
transformers

View File

@ -3,6 +3,6 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==70.3.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate

View File

@ -1,4 +1,4 @@
bark==0.1.5
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi

View File

@ -1,2 +1,2 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf

View File

@ -3,6 +3,6 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate

View File

@ -1,4 +1,4 @@
TTS==0.22.0
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi

View File

@ -168,7 +168,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.CFGScale != 0:
self.cfg_scale = request.CFGScale
clipmodel = "runwayml/stable-diffusion-v1-5"
clipmodel = "Lykon/dreamshaper-8"
if request.CLIPModel != "":
clipmodel = request.CLIPModel
clipsubfolder = "text_encoder"

View File

@ -3,7 +3,7 @@ intel-extension-for-pytorch
torch
torchvision
optimum[openvino]
setuptools==70.3.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
diffusers
opencv-python
transformers

View File

@ -1,5 +1,5 @@
setuptools
grpcio==1.65.4
grpcio==1.66.1
pillow
protobuf
certifi

View File

@ -53,7 +53,7 @@ class TestBackendServicer(unittest.TestCase):
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="runwayml/stable-diffusion-v1-5"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="Lykon/dreamshaper-8"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
@ -71,7 +71,7 @@ class TestBackendServicer(unittest.TestCase):
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="runwayml/stable-diffusion-v1-5"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="Lykon/dreamshaper-8"))
print(response.message)
self.assertTrue(response.success)
image_req = backend_pb2.GenerateImageRequest(positive_prompt="cat", width=16,height=16, dst="test.jpg")

View File

@ -1 +0,0 @@
source

View File

@ -1,25 +0,0 @@
export CONDA_ENV_PATH = "exllama.yml"
.PHONY: exllama
exllama: protogen
bash install.sh ${CONDA_ENV_PATH}
.PHONY: run
run: protogen
@echo "Running exllama..."
bash run.sh
@echo "exllama run."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
$(RM) -r venv source __pycache__

View File

@ -1,5 +0,0 @@
# Creating a separate environment for the exllama project
```
make exllama
```

View File

@ -1,159 +0,0 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os, glob
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import version as torch_version
from source.tokenizer import ExLlamaTokenizer
from source.generator import ExLlamaGenerator
from source.model import ExLlama, ExLlamaCache, ExLlamaConfig
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def generate(self,prompt, max_new_tokens):
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt)
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
decoded_text = ''
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
if token.item() == self.generator.tokenizer.eos_token_id:
break
return decoded_text
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
# https://github.com/turboderp/exllama/blob/master/example_cfg.py
model_directory = request.ModelFile
# Locate files we need within that directory
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
model_config_path = os.path.join(model_directory, "config.json")
st_pattern = os.path.join(model_directory, "*.safetensors")
model_path = glob.glob(st_pattern)[0]
# Create config, model, tokenizer and generator
config = ExLlamaConfig(model_config_path) # create config from config.json
config.model_path = model_path # supply path to model weights file
if (request.ContextSize):
config.max_seq_len = request.ContextSize # override max sequence length
config.max_attention_size = request.ContextSize**2 # Should be set to context_size^2.
# https://github.com/turboderp/exllama/issues/220#issuecomment-1720324163
# Set Rope scaling.
if (request.RopeFreqScale):
# Alpha value for Rope scaling.
# Higher value increases context but adds perplexity.
# alpha_value and compress_pos_emb are mutually exclusive.
# https://github.com/turboderp/exllama/issues/115
config.alpha_value = request.RopeFreqScale
config.calculate_rotary_embedding_base()
model = ExLlama(config) # create ExLlama instance and load the weights
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
cache = ExLlamaCache(model, batch_size = 2) # create cache for inference
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
self.generator= generator
self.model = model
self.tokenizer = tokenizer
self.cache = cache
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
penalty = 1.15
if request.Penalty != 0.0:
penalty = request.Penalty
self.generator.settings.token_repetition_penalty_max = penalty
self.generator.settings.temperature = request.Temperature
self.generator.settings.top_k = request.TopK
self.generator.settings.top_p = request.TopP
tokens = 512
if request.Tokens != 0:
tokens = request.Tokens
if self.cache.batch_size == 1:
del self.cache
self.cache = ExLlamaCache(self.model, batch_size=2)
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
t = self.generate(request.Prompt, tokens)
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -e
LIMIT_TARGETS="cublas"
source $(dirname $0)/../common/libbackend.sh
installRequirements
git clone https://github.com/turboderp/exllama $MY_DIR/source
uv pip install ${BUILD_ISOLATION_FLAG} --requirement ${MY_DIR}/source/requirements.txt
cp -v ./*py $MY_DIR/source/

View File

@ -1,3 +0,0 @@
transformers
accelerate
torch

View File

@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch
transformers
accelerate

View File

@ -1,3 +0,0 @@
torch
transformers
accelerate

View File

@ -1,4 +0,0 @@
grpcio==1.65.5
protobuf
certifi
setuptools

View File

@ -1,7 +0,0 @@
#!/bin/bash
LIMIT_TARGETS="cublas"
BACKEND_FILE="${MY_DIR}/source/backend.py"
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View File

@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@ -1,4 +1,4 @@
grpcio==1.65.4
grpcio==1.66.1
protobuf
certifi
wheel

View File

@ -1,3 +1,3 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi

View File

@ -2,7 +2,7 @@
intel-extension-for-pytorch
torch
optimum[openvino]
grpcio==1.65.5
grpcio==1.66.1
protobuf
librosa==0.9.1
faster-whisper==1.0.3
@ -15,7 +15,7 @@ unidecode==1.3.7
whisper-timestamped==1.15.4
openai
python-dotenv
pypinyin==0.50.0
pypinyin==0.53.0
cn2an==0.5.22
jieba==0.42.1
gradio==4.38.1

View File

@ -1,4 +1,4 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
librosa
faster-whisper

View File

@ -1 +1,3 @@
git+https://github.com/huggingface/parler-tts.git@8e465f1b5fcd223478e07175cb40494d19ffbe17
llvmlite==0.43.0
numba==0.60.0

View File

@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch
torchaudio
torch==2.3.0+rocm6.0
torchaudio==2.3.0+rocm6.0
transformers
accelerate

View File

@ -3,6 +3,6 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate

View File

@ -1,4 +1,4 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi
llvmlite==0.43.0

View File

@ -5,4 +5,4 @@ accelerate
torch
rerankers[transformers]
optimum[openvino]
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@ -1,3 +1,3 @@
grpcio==1.65.4
grpcio==1.66.1
protobuf
certifi

View File

@ -55,7 +55,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
model_name = request.Model
try:
self.model = SentenceTransformer(model_name)
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")

View File

@ -2,5 +2,5 @@ torch
accelerate
transformers
bitsandbytes
sentence-transformers==3.0.1
sentence-transformers==3.1.0
transformers

View File

@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch
accelerate
sentence-transformers==3.0.1
sentence-transformers==3.1.0
transformers

View File

@ -1,4 +1,4 @@
torch
accelerate
sentence-transformers==3.0.1
sentence-transformers==3.1.0
transformers

View File

@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch
accelerate
sentence-transformers==3.0.1
sentence-transformers==3.1.0
transformers

View File

@ -4,5 +4,5 @@ torch
optimum[openvino]
setuptools==69.5.1 # https://github.com/mudler/LocalAI/issues/2406
accelerate
sentence-transformers==3.0.1
sentence-transformers==3.1.0
transformers

View File

@ -1,3 +1,5 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi
datasets
einops

View File

@ -15,7 +15,7 @@ import backend_pb2_grpc
import grpc
from scipy.io.wavfile import write as write_wav
from scipy.io import wavfile
from transformers import AutoProcessor, MusicgenForConditionalGeneration
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -63,6 +63,61 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Result(message="Model loaded successfully", success=True)
def SoundGeneration(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = None
if request.text == "":
inputs = self.model.get_unconditional_inputs(num_samples=1)
elif request.HasField('src'):
# TODO SECURITY CODE GOES HERE LOL
# WHO KNOWS IF THIS WORKS???
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
if request.HasField('src_divisor'):
wsamples = wsamples[: len(wsamples) // request.src_divisor]
inputs = self.processor(
audio=wsamples,
sampling_rate=sample_rate,
text=[request.text],
padding=True,
return_tensors="pt",
)
else:
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
model_name = request.model
if model_name == "":
@ -75,8 +130,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
padding=True,
return_tensors="pt",
)
tokens = 256
# TODO get tokens from request?
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate

View File

@ -4,4 +4,4 @@ transformers
accelerate
torch
optimum[openvino]
setuptools==69.5.1 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@ -1,4 +1,4 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
scipy==1.14.0
certifi

View File

@ -63,7 +63,7 @@ class TestBackendServicer(unittest.TestCase):
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
This method tests if TTS is generated successfully
"""
try:
self.setUp()
@ -79,3 +79,22 @@ class TestBackendServicer(unittest.TestCase):
self.fail("TTS service failed")
finally:
self.tearDown()
def test_sound_generation(self):
"""
This method tests if SoundGeneration is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
sg_request = backend_pb2.SoundGenerationRequest(text="80s TV news production music hit for tonight's biggest story")
sg_response = stub.SoundGeneration(sg_request)
self.assertIsNotNone(sg_response)
except Exception as err:
print(err)
self.fail("SoundGeneration service failed")
finally:
self.tearDown()

View File

@ -1,4 +1,4 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi
setuptools==69.5.1 # https://github.com/mudler/LocalAI/issues/2406

View File

@ -4,4 +4,4 @@ accelerate
torch
torchaudio
optimum[openvino]
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@ -1,3 +1,3 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi

View File

@ -135,6 +135,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
res = await gen.__anext__()
return res
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
outputs = self.model.encode(request.Embeddings)
# Check if we have one result at least
if len(outputs) == 0:
context.set_code(grpc.StatusCode.INVALID_ARGUMENT)
context.set_details("No embeddings were calculated.")
return backend_pb2.EmbeddingResult()
return backend_pb2.EmbeddingResult(embeddings=outputs[0].outputs.embedding)
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.

View File

@ -4,4 +4,4 @@ accelerate
torch
transformers
optimum[openvino]
setuptools==70.3.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@ -1,4 +1,4 @@
grpcio==1.65.5
grpcio==1.66.1
protobuf
certifi
setuptools

View File

@ -74,3 +74,26 @@ class TestBackendServicer(unittest.TestCase):
self.fail("text service failed")
finally:
self.tearDown()
def test_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="intfloat/e5-mistral-7b-instruct"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
# assert that is a list of floats
self.assertIsInstance(embedding_response.embeddings, list)
# assert that the list is not empty
self.assertTrue(len(embedding_response.embeddings) > 0)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()

View File

@ -0,0 +1,13 @@
package backend_test
import (
"testing"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
func TestBackend(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t, "Backend test suite")
}

View File

@ -9,6 +9,8 @@ import (
"sync"
"unicode/utf8"
"github.com/rs/zerolog/log"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
@ -87,7 +89,7 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
case string:
protoMessages[i].Content = ct
default:
return nil, fmt.Errorf("Unsupported type for schema.Message.Content for inference: %T", ct)
return nil, fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
}
}
}
@ -181,13 +183,37 @@ func Finetune(config config.BackendConfig, input, prediction string) string {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
r, err := regexp.Compile(c)
if err != nil {
log.Fatal().Err(err).Msg("failed to compile regex")
}
cutstrings[c] = r
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
// extract results from the response which can be for instance inside XML tags
var predResult string
for _, r := range config.ExtractRegex {
mu.Lock()
reg, ok := cutstrings[r]
if !ok {
regex, err := regexp.Compile(r)
if err != nil {
log.Fatal().Err(err).Msg("failed to compile regex")
}
cutstrings[r] = regex
reg = regex
}
mu.Unlock()
predResult += reg.FindString(prediction)
}
if predResult != "" {
prediction = predResult
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}

109
core/backend/llm_test.go Normal file
View File

@ -0,0 +1,109 @@
package backend_test
import (
. "github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("LLM tests", func() {
Context("Finetune LLM output", func() {
var (
testConfig config.BackendConfig
input string
prediction string
result string
)
BeforeEach(func() {
testConfig = config.BackendConfig{
PredictionOptions: schema.PredictionOptions{
Echo: false,
},
LLMConfig: config.LLMConfig{
Cutstrings: []string{`<.*?>`}, // Example regex for removing XML tags
ExtractRegex: []string{`<result>(.*?)</result>`}, // Example regex to extract from tags
TrimSpace: []string{" ", "\n"},
TrimSuffix: []string{".", "!"},
},
}
})
Context("when echo is enabled", func() {
BeforeEach(func() {
testConfig.Echo = true
input = "Hello"
prediction = "World"
})
It("should prepend input to prediction", func() {
result = Finetune(testConfig, input, prediction)
Expect(result).To(Equal("HelloWorld"))
})
})
Context("when echo is disabled", func() {
BeforeEach(func() {
testConfig.Echo = false
input = "Hello"
prediction = "World"
})
It("should not modify the prediction with input", func() {
result = Finetune(testConfig, input, prediction)
Expect(result).To(Equal("World"))
})
})
Context("when cutstrings regex is applied", func() {
BeforeEach(func() {
input = ""
prediction = "<div>Hello</div> World"
})
It("should remove substrings matching cutstrings regex", func() {
result = Finetune(testConfig, input, prediction)
Expect(result).To(Equal("Hello World"))
})
})
Context("when extract regex is applied", func() {
BeforeEach(func() {
input = ""
prediction = "<response><result>42</result></response>"
})
It("should extract substrings matching the extract regex", func() {
result = Finetune(testConfig, input, prediction)
Expect(result).To(Equal("42"))
})
})
Context("when trimming spaces", func() {
BeforeEach(func() {
input = ""
prediction = " Hello World "
})
It("should trim spaces from the prediction", func() {
result = Finetune(testConfig, input, prediction)
Expect(result).To(Equal("Hello World"))
})
})
Context("when trimming suffixes", func() {
BeforeEach(func() {
input = ""
prediction = "Hello World."
})
It("should trim suffixes from the prediction", func() {
result = Finetune(testConfig, input, prediction)
Expect(result).To(Equal("Hello World"))
})
})
})
})

View File

@ -0,0 +1,74 @@
package backend
import (
"context"
"fmt"
"os"
"path/filepath"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/utils"
)
func SoundGeneration(
backend string,
modelFile string,
text string,
duration *float32,
temperature *float32,
doSample *bool,
sourceFile *string,
sourceDivisor *int32,
loader *model.ModelLoader,
appConfig *config.ApplicationConfig,
backendConfig config.BackendConfig,
) (string, *proto.Result, error) {
if backend == "" {
return "", nil, fmt.Errorf("backend is a required parameter")
}
grpcOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
model.WithBackendString(backend),
model.WithModel(modelFile),
model.WithContext(appConfig.Context),
model.WithAssetDir(appConfig.AssetsDestination),
model.WithLoadGRPCLoadModelOpts(grpcOpts),
})
soundGenModel, err := loader.BackendLoader(opts...)
if err != nil {
return "", nil, err
}
if soundGenModel == nil {
return "", nil, fmt.Errorf("could not load sound generation model")
}
if err := os.MkdirAll(appConfig.AudioDir, 0750); err != nil {
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
}
fileName := utils.GenerateUniqueFileName(appConfig.AudioDir, "sound_generation", ".wav")
filePath := filepath.Join(appConfig.AudioDir, fileName)
res, err := soundGenModel.SoundGeneration(context.Background(), &proto.SoundGenerationRequest{
Text: text,
Model: modelFile,
Dst: filePath,
Sample: doSample,
Duration: duration,
Temperature: temperature,
Src: sourceFile,
SrcDivisor: sourceDivisor,
})
// return RPC error if any
if !res.Success {
return "", nil, fmt.Errorf(res.Message)
}
return filePath, res, err
}

View File

@ -3,12 +3,13 @@ package backend
import (
"context"
"fmt"
"time"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc/proto"
model "github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/model"
)
func ModelTranscription(audio, language string, translate bool, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
@ -21,19 +22,40 @@ func ModelTranscription(audio, language string, translate bool, ml *model.ModelL
model.WithAssetDir(appConfig.AssetsDestination),
})
whisperModel, err := ml.BackendLoader(opts...)
transcriptionModel, err := ml.BackendLoader(opts...)
if err != nil {
return nil, err
}
if whisperModel == nil {
return nil, fmt.Errorf("could not load whisper model")
if transcriptionModel == nil {
return nil, fmt.Errorf("could not load transcription model")
}
return whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
r, err := transcriptionModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
Dst: audio,
Language: language,
Translate: translate,
Threads: uint32(*backendConfig.Threads),
})
if err != nil {
return nil, err
}
tr := &schema.TranscriptionResult{
Text: r.Text,
}
for _, s := range r.Segments {
var tks []int
for _, t := range s.Tokens {
tks = append(tks, int(t))
}
tr.Segments = append(tr.Segments,
schema.Segment{
Text: s.Text,
Id: int(s.Id),
Start: time.Duration(s.Start),
End: time.Duration(s.End),
Tokens: tks,
})
}
return tr, err
}

View File

@ -9,31 +9,15 @@ import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/grpc/proto"
model "github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/utils"
)
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
}
}
func ModelTTS(
backend,
text,
modelFile,
voice ,
voice,
language string,
loader *model.ModelLoader,
appConfig *config.ApplicationConfig,
@ -66,7 +50,7 @@ func ModelTTS(
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
}
fileName := generateUniqueFileName(appConfig.AudioDir, "tts", ".wav")
fileName := utils.GenerateUniqueFileName(appConfig.AudioDir, "tts", ".wav")
filePath := filepath.Join(appConfig.AudioDir, fileName)
// If the model file is not empty, we pass it joined with the model path
@ -94,6 +78,9 @@ func ModelTTS(
Dst: filePath,
Language: &language,
})
if err != nil {
return "", nil, err
}
// return RPC error if any
if !res.Success {

80
core/cli/api/p2p.go Normal file
View File

@ -0,0 +1,80 @@
package cli_api
import (
"context"
"fmt"
"net"
"os"
"strings"
"github.com/mudler/LocalAI/core/p2p"
"github.com/mudler/edgevpn/pkg/node"
"github.com/rs/zerolog/log"
)
func StartP2PStack(ctx context.Context, address, token, networkID string, federated bool) error {
var n *node.Node
// Here we are avoiding creating multiple nodes:
// - if the federated mode is enabled, we create a federated node and expose a service
// - exposing a service creates a node with specific options, and we don't want to create another node
// If the federated mode is enabled, we expose a service to the local instance running
// at r.Address
if federated {
_, port, err := net.SplitHostPort(address)
if err != nil {
return err
}
// Here a new node is created and started
// and a service is exposed by the node
node, err := p2p.ExposeService(ctx, "localhost", port, token, p2p.NetworkID(networkID, p2p.FederatedID))
if err != nil {
return err
}
if err := p2p.ServiceDiscoverer(ctx, node, token, p2p.NetworkID(networkID, p2p.FederatedID), nil, false); err != nil {
return err
}
n = node
}
// If the p2p mode is enabled, we start the service discovery
if token != "" {
// If a node wasn't created previously, create it
if n == nil {
node, err := p2p.NewNode(token)
if err != nil {
return err
}
err = node.Start(ctx)
if err != nil {
return fmt.Errorf("starting new node: %w", err)
}
n = node
}
// Attach a ServiceDiscoverer to the p2p node
log.Info().Msg("Starting P2P server discovery...")
if err := p2p.ServiceDiscoverer(ctx, n, token, p2p.NetworkID(networkID, p2p.WorkerID), func(serviceID string, node p2p.NodeData) {
var tunnelAddresses []string
for _, v := range p2p.GetAvailableNodes(p2p.NetworkID(networkID, p2p.WorkerID)) {
if v.IsOnline() {
tunnelAddresses = append(tunnelAddresses, v.TunnelAddress)
} else {
log.Info().Msgf("Node %s is offline", v.ID)
}
}
tunnelEnvVar := strings.Join(tunnelAddresses, ",")
os.Setenv("LLAMACPP_GRPC_SERVERS", tunnelEnvVar)
log.Debug().Msgf("setting LLAMACPP_GRPC_SERVERS to %s", tunnelEnvVar)
}, true); err != nil {
return err
}
}
return nil
}

View File

@ -12,6 +12,7 @@ var CLI struct {
Federated FederatedCLI `cmd:"" help:"Run LocalAI in federated mode"`
Models ModelsCMD `cmd:"" help:"Manage LocalAI models and definitions"`
TTS TTSCMD `cmd:"" help:"Convert text to speech"`
SoundGeneration SoundGenerationCMD `cmd:"" help:"Generates audio files from text or audio"`
Transcript TranscriptCMD `cmd:"" help:"Convert audio to text"`
Worker worker.Worker `cmd:"" help:"Run workers to distribute workload (llama.cpp-only)"`
Util UtilCMD `cmd:"" help:"Utility commands"`

View File

@ -3,11 +3,10 @@ package cli
import (
"context"
"fmt"
"net"
"os"
"strings"
"time"
cli_api "github.com/mudler/LocalAI/core/cli/api"
cliContext "github.com/mudler/LocalAI/core/cli/context"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http"
@ -52,7 +51,12 @@ type RunCMD struct {
DisableWebUI bool `env:"LOCALAI_DISABLE_WEBUI,DISABLE_WEBUI" default:"false" help:"Disable webui" group:"api"`
DisablePredownloadScan bool `env:"LOCALAI_DISABLE_PREDOWNLOAD_SCAN" help:"If true, disables the best-effort security scanner before downloading any files." group:"hardening" default:"false"`
OpaqueErrors bool `env:"LOCALAI_OPAQUE_ERRORS" default:"false" help:"If true, all error responses are replaced with blank 500 errors. This is intended only for hardening against information leaks and is normally not recommended." group:"hardening"`
UseSubtleKeyComparison bool `env:"LOCALAI_SUBTLE_KEY_COMPARISON" default:"false" help:"If true, API Key validation comparisons will be performed using constant-time comparisons rather than simple equality. This trades off performance on each request for resiliancy against timing attacks." group:"hardening"`
DisableApiKeyRequirementForHttpGet bool `env:"LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET" default:"false" help:"If true, a valid API key is not required to issue GET requests to portions of the web ui. This should only be enabled in secure testing environments" group:"hardening"`
HttpGetExemptedEndpoints []string `env:"LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS" default:"^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$" help:"If LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET is overriden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review" group:"hardening"`
Peer2Peer bool `env:"LOCALAI_P2P,P2P" name:"p2p" default:"false" help:"Enable P2P mode" group:"p2p"`
Peer2PeerDHTInterval int `env:"LOCALAI_P2P_DHT_INTERVAL,P2P_DHT_INTERVAL" default:"360" name:"p2p-dht-interval" help:"Interval for DHT refresh (used during token generation)" group:"p2p"`
Peer2PeerOTPInterval int `env:"LOCALAI_P2P_OTP_INTERVAL,P2P_OTP_INTERVAL" default:"9000" name:"p2p-otp-interval" help:"Interval for OTP refresh (used during token generation)" group:"p2p"`
Peer2PeerToken string `env:"LOCALAI_P2P_TOKEN,P2P_TOKEN,TOKEN" name:"p2ptoken" help:"Token for P2P mode (optional)" group:"p2p"`
Peer2PeerNetworkID string `env:"LOCALAI_P2P_NETWORK_ID,P2P_NETWORK_ID" help:"Network ID for P2P mode, can be set arbitrarly by the user for grouping a set of instances" group:"p2p"`
ParallelRequests bool `env:"LOCALAI_PARALLEL_REQUESTS,PARALLEL_REQUESTS" help:"Enable backends to handle multiple requests in parallel if they support it (e.g.: llama.cpp or vllm)" group:"backends"`
@ -96,6 +100,9 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
config.WithModelsURL(append(r.Models, r.ModelArgs...)...),
config.WithOpaqueErrors(r.OpaqueErrors),
config.WithEnforcedPredownloadScans(!r.DisablePredownloadScan),
config.WithSubtleKeyComparison(r.UseSubtleKeyComparison),
config.WithDisableApiKeyRequirementForHttpGet(r.DisableApiKeyRequirementForHttpGet),
config.WithHttpGetExemptedEndpoints(r.HttpGetExemptedEndpoints),
config.WithP2PNetworkID(r.Peer2PeerNetworkID),
}
@ -107,7 +114,7 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
// IF no token is provided, and p2p is enabled,
// we generate one and wait for the user to pick up the token (this is for interactive)
log.Info().Msg("No token provided, generating one")
token = p2p.GenerateToken()
token = p2p.GenerateToken(r.Peer2PeerDHTInterval, r.Peer2PeerOTPInterval)
log.Info().Msg("Generated Token:")
fmt.Println(token)
@ -115,46 +122,13 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
fmt.Printf("export TOKEN=\"%s\"\nlocal-ai worker p2p-llama-cpp-rpc\n", token)
}
opts = append(opts, config.WithP2PToken(token))
node, err := p2p.NewNode(token)
if err != nil {
return err
}
log.Info().Msg("Starting P2P server discovery...")
if err := p2p.ServiceDiscoverer(context.Background(), node, token, p2p.NetworkID(r.Peer2PeerNetworkID, p2p.WorkerID), func(serviceID string, node p2p.NodeData) {
var tunnelAddresses []string
for _, v := range p2p.GetAvailableNodes(p2p.NetworkID(r.Peer2PeerNetworkID, p2p.WorkerID)) {
if v.IsOnline() {
tunnelAddresses = append(tunnelAddresses, v.TunnelAddress)
} else {
log.Info().Msgf("Node %s is offline", v.ID)
}
}
tunnelEnvVar := strings.Join(tunnelAddresses, ",")
backgroundCtx := context.Background()
os.Setenv("LLAMACPP_GRPC_SERVERS", tunnelEnvVar)
log.Debug().Msgf("setting LLAMACPP_GRPC_SERVERS to %s", tunnelEnvVar)
}, true); err != nil {
if err := cli_api.StartP2PStack(backgroundCtx, r.Address, token, r.Peer2PeerNetworkID, r.Federated); err != nil {
return err
}
}
if r.Federated {
_, port, err := net.SplitHostPort(r.Address)
if err != nil {
return err
}
fedCtx := context.Background()
node, err := p2p.ExposeService(fedCtx, "localhost", port, token, p2p.NetworkID(r.Peer2PeerNetworkID, p2p.FederatedID))
if err != nil {
return err
}
if err := p2p.ServiceDiscoverer(fedCtx, node, token, p2p.NetworkID(r.Peer2PeerNetworkID, p2p.FederatedID), nil, false); err != nil {
return err
}
}
idleWatchDog := r.EnableWatchdogIdle
busyWatchDog := r.EnableWatchdogBusy

110
core/cli/soundgeneration.go Normal file
View File

@ -0,0 +1,110 @@
package cli
import (
"context"
"fmt"
"os"
"path/filepath"
"strconv"
"strings"
"github.com/mudler/LocalAI/core/backend"
cliContext "github.com/mudler/LocalAI/core/cli/context"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/model"
"github.com/rs/zerolog/log"
)
type SoundGenerationCMD struct {
Text []string `arg:""`
Backend string `short:"b" required:"" help:"Backend to run the SoundGeneration model"`
Model string `short:"m" required:"" help:"Model name to run the SoundGeneration"`
Duration string `short:"d" help:"If specified, the length of audio to generate in seconds"`
Temperature string `short:"t" help:"If specified, the temperature of the generation"`
InputFile string `short:"i" help:"If specified, the input file to condition generation upon"`
InputFileSampleDivisor string `short:"f" help:"If InputFile and this divisor is specified, the first portion of the sample file will be used"`
DoSample bool `short:"s" default:"true" help:"Enables sampling from the model. Better quality at the cost of speed. Defaults to enabled."`
OutputFile string `short:"o" type:"path" help:"The path to write the output wav file"`
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
ExternalGRPCBackends []string `env:"LOCALAI_EXTERNAL_GRPC_BACKENDS,EXTERNAL_GRPC_BACKENDS" help:"A list of external grpc backends" group:"backends"`
}
func parseToFloat32Ptr(input string) *float32 {
f, err := strconv.ParseFloat(input, 32)
if err != nil {
return nil
}
f2 := float32(f)
return &f2
}
func parseToInt32Ptr(input string) *int32 {
i, err := strconv.ParseInt(input, 10, 32)
if err != nil {
return nil
}
i2 := int32(i)
return &i2
}
func (t *SoundGenerationCMD) Run(ctx *cliContext.Context) error {
outputFile := t.OutputFile
outputDir := t.BackendAssetsPath
if outputFile != "" {
outputDir = filepath.Dir(outputFile)
}
text := strings.Join(t.Text, " ")
externalBackends := make(map[string]string)
// split ":" to get backend name and the uri
for _, v := range t.ExternalGRPCBackends {
backend := v[:strings.IndexByte(v, ':')]
uri := v[strings.IndexByte(v, ':')+1:]
externalBackends[backend] = uri
fmt.Printf("TMP externalBackends[%q]=%q\n\n", backend, uri)
}
opts := &config.ApplicationConfig{
ModelPath: t.ModelsPath,
Context: context.Background(),
AudioDir: outputDir,
AssetsDestination: t.BackendAssetsPath,
ExternalGRPCBackends: externalBackends,
}
ml := model.NewModelLoader(opts.ModelPath)
defer func() {
err := ml.StopAllGRPC()
if err != nil {
log.Error().Err(err).Msg("unable to stop all grpc processes")
}
}()
options := config.BackendConfig{}
options.SetDefaults()
var inputFile *string
if t.InputFile != "" {
inputFile = &t.InputFile
}
filePath, _, err := backend.SoundGeneration(t.Backend, t.Model, text,
parseToFloat32Ptr(t.Duration), parseToFloat32Ptr(t.Temperature), &t.DoSample,
inputFile, parseToInt32Ptr(t.InputFileSampleDivisor), ml, opts, options)
if err != nil {
return err
}
if outputFile != "" {
if err := os.Rename(filePath, outputFile); err != nil {
return err
}
fmt.Printf("Generate file %s\n", outputFile)
} else {
fmt.Printf("Generate file %s\n", filePath)
}
return nil
}

View File

@ -2,6 +2,7 @@ package worker
type WorkerFlags struct {
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
ExtraLLamaCPPArgs string `name:"llama-cpp-args" env:"LOCALAI_EXTRA_LLAMA_CPP_ARGS,EXTRA_LLAMA_CPP_ARGS" help:"Extra arguments to pass to llama-cpp-rpc-server"`
}
type Worker struct {

View File

@ -3,6 +3,7 @@ package worker
import (
"fmt"
"os"
"strings"
"syscall"
cliContext "github.com/mudler/LocalAI/core/cli/context"
@ -12,7 +13,6 @@ import (
)
type LLamaCPP struct {
Args []string `arg:"" optional:"" name:"models" help:"Model configuration URLs to load"`
WorkerFlags `embed:""`
}
@ -34,9 +34,8 @@ func (r *LLamaCPP) Run(ctx *cliContext.Context) error {
"llama-cpp-rpc-server",
)
args := os.Args[4:]
args := strings.Split(r.ExtraLLamaCPPArgs, " ")
args, grpcProcess = library.LoadLDSO(r.BackendAssetsPath, args, grpcProcess)
args = append([]string{grpcProcess}, args...)
return syscall.Exec(
grpcProcess,

View File

@ -8,6 +8,7 @@ import (
"fmt"
"os"
"os/exec"
"strings"
"time"
cliContext "github.com/mudler/LocalAI/core/cli/context"
@ -24,7 +25,6 @@ type P2P struct {
NoRunner bool `env:"LOCALAI_NO_RUNNER,NO_RUNNER" help:"Do not start the llama-cpp-rpc-server"`
RunnerAddress string `env:"LOCALAI_RUNNER_ADDRESS,RUNNER_ADDRESS" help:"Address of the llama-cpp-rpc-server"`
RunnerPort string `env:"LOCALAI_RUNNER_PORT,RUNNER_PORT" help:"Port of the llama-cpp-rpc-server"`
ExtraLLamaCPPArgs []string `env:"LOCALAI_EXTRA_LLAMA_CPP_ARGS,EXTRA_LLAMA_CPP_ARGS" help:"Extra arguments to pass to llama-cpp-rpc-server"`
Peer2PeerNetworkID string `env:"LOCALAI_P2P_NETWORK_ID,P2P_NETWORK_ID" help:"Network ID for P2P mode, can be set arbitrarly by the user for grouping a set of instances" group:"p2p"`
}
@ -65,10 +65,7 @@ func (r *P2P) Run(ctx *cliContext.Context) error {
return err
}
log.Info().Msgf("You need to start llama-cpp-rpc-server on '%s:%s'", address, p)
return nil
}
} else {
// Start llama.cpp directly from the version we have pre-packaged
go func() {
for {
@ -79,8 +76,8 @@ func (r *P2P) Run(ctx *cliContext.Context) error {
"util",
"llama-cpp-rpc-server",
)
args := append([]string{"--host", address, "--port", fmt.Sprint(port)}, r.ExtraLLamaCPPArgs...)
extraArgs := strings.Split(r.ExtraLLamaCPPArgs, " ")
args := append([]string{"--host", address, "--port", fmt.Sprint(port)}, extraArgs...)
args, grpcProcess = library.LoadLDSO(r.BackendAssetsPath, args, grpcProcess)
cmd := exec.Command(
@ -104,6 +101,7 @@ func (r *P2P) Run(ctx *cliContext.Context) error {
if err != nil {
return err
}
}
for {
time.Sleep(1 * time.Second)

View File

@ -4,6 +4,7 @@ import (
"context"
"embed"
"encoding/json"
"regexp"
"time"
"github.com/mudler/LocalAI/pkg/xsysinfo"
@ -16,7 +17,6 @@ type ApplicationConfig struct {
ModelPath string
LibPath string
UploadLimitMB, Threads, ContextSize int
DisableWebUI bool
F16 bool
Debug bool
ImageDir string
@ -31,11 +31,17 @@ type ApplicationConfig struct {
PreloadModelsFromPath string
CORSAllowOrigins string
ApiKeys []string
EnforcePredownloadScans bool
OpaqueErrors bool
P2PToken string
P2PNetworkID string
DisableWebUI bool
EnforcePredownloadScans bool
OpaqueErrors bool
UseSubtleKeyComparison bool
DisableApiKeyRequirementForHttpGet bool
HttpGetExemptedEndpoints []*regexp.Regexp
DisableGalleryEndpoint bool
ModelLibraryURL string
Galleries []Gallery
@ -57,8 +63,6 @@ type ApplicationConfig struct {
ModelsURL []string
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
DisableGalleryEndpoint bool
}
type AppOption func(*ApplicationConfig)
@ -327,6 +331,32 @@ func WithOpaqueErrors(opaque bool) AppOption {
}
}
func WithSubtleKeyComparison(subtle bool) AppOption {
return func(o *ApplicationConfig) {
o.UseSubtleKeyComparison = subtle
}
}
func WithDisableApiKeyRequirementForHttpGet(required bool) AppOption {
return func(o *ApplicationConfig) {
o.DisableApiKeyRequirementForHttpGet = required
}
}
func WithHttpGetExemptedEndpoints(endpoints []string) AppOption {
return func(o *ApplicationConfig) {
o.HttpGetExemptedEndpoints = []*regexp.Regexp{}
for _, epr := range endpoints {
r, err := regexp.Compile(epr)
if err == nil && r != nil {
o.HttpGetExemptedEndpoints = append(o.HttpGetExemptedEndpoints, r)
} else {
log.Warn().Err(err).Str("regex", epr).Msg("Error while compiling HTTP Get Exemption regex, skipping this entry.")
}
}
}
}
// ToConfigLoaderOptions returns a slice of ConfigLoader Option.
// Some options defined at the application level are going to be passed as defaults for
// all the configuration for the models.

View File

@ -126,6 +126,7 @@ type LLMConfig struct {
Grammar string `yaml:"grammar"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
ExtractRegex []string `yaml:"extract_regex"`
TrimSpace []string `yaml:"trimspace"`
TrimSuffix []string `yaml:"trimsuffix"`

View File

@ -3,13 +3,15 @@ package http
import (
"embed"
"errors"
"fmt"
"net/http"
"strings"
"github.com/dave-gray101/v2keyauth"
"github.com/mudler/LocalAI/pkg/utils"
"github.com/mudler/LocalAI/core/http/endpoints/localai"
"github.com/mudler/LocalAI/core/http/endpoints/openai"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/http/routes"
"github.com/mudler/LocalAI/core/config"
@ -137,36 +139,13 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
})
}
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
auth := func(c *fiber.Ctx) error {
if len(appConfig.ApiKeys) == 0 {
return c.Next()
kaConfig, err := middleware.GetKeyAuthConfig(appConfig)
if err != nil || kaConfig == nil {
return nil, fmt.Errorf("failed to create key auth config: %w", err)
}
if len(appConfig.ApiKeys) == 0 {
return c.Next()
}
authHeader := readAuthHeader(c)
if authHeader == "" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
}
// If it's a bearer token
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
}
apiKey := authHeaderParts[1]
for _, key := range appConfig.ApiKeys {
if apiKey == key {
return c.Next()
}
}
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
}
// Auth is applied to _all_ endpoints. No exceptions. Filtering out endpoints to bypass is the role of the Filter property of the KeyAuth Configuration
app.Use(v2keyauth.New(*kaConfig))
if appConfig.CORS {
var c func(ctx *fiber.Ctx) error
@ -192,13 +171,13 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
galleryService := services.NewGalleryService(appConfig)
galleryService.Start(appConfig.Context, cl)
routes.RegisterElevenLabsRoutes(app, cl, ml, appConfig, auth)
routes.RegisterLocalAIRoutes(app, cl, ml, appConfig, galleryService, auth)
routes.RegisterOpenAIRoutes(app, cl, ml, appConfig, auth)
routes.RegisterElevenLabsRoutes(app, cl, ml, appConfig)
routes.RegisterLocalAIRoutes(app, cl, ml, appConfig, galleryService)
routes.RegisterOpenAIRoutes(app, cl, ml, appConfig)
if !appConfig.DisableWebUI {
routes.RegisterUIRoutes(app, cl, ml, appConfig, galleryService, auth)
routes.RegisterUIRoutes(app, cl, ml, appConfig, galleryService)
}
routes.RegisterJINARoutes(app, cl, ml, appConfig, auth)
routes.RegisterJINARoutes(app, cl, ml, appConfig)
httpFS := http.FS(embedDirStatic)

View File

@ -772,6 +772,17 @@ var _ = Describe("API test", func() {
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error:"))
})
It("shows the external backend", func() {
// do an http request to the /system endpoint
resp, err := http.Get("http://127.0.0.1:9090/system")
Expect(err).ToNot(HaveOccurred())
Expect(resp.StatusCode).To(Equal(200))
dat, err := io.ReadAll(resp.Body)
Expect(err).ToNot(HaveOccurred())
Expect(string(dat)).To(ContainSubstring("huggingface"))
Expect(string(dat)).To(ContainSubstring("llama-cpp"))
})
It("transcribes audio", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")

View File

@ -0,0 +1,65 @@
package elevenlabs
import (
"github.com/gofiber/fiber/v2"
"github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
fiberContext "github.com/mudler/LocalAI/core/http/ctx"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/model"
"github.com/rs/zerolog/log"
)
// SoundGenerationEndpoint is the ElevenLabs SoundGeneration endpoint https://elevenlabs.io/docs/api-reference/sound-generation
// @Summary Generates audio from the input text.
// @Param request body schema.ElevenLabsSoundGenerationRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/sound-generation [post]
func SoundGenerationEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.ElevenLabsSoundGenerationRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
modelFile, err := fiberContext.ModelFromContext(c, cl, ml, input.ModelID, false)
if err != nil {
modelFile = input.ModelID
log.Warn().Str("ModelID", input.ModelID).Msg("Model not found in context")
}
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
config.LoadOptionDebug(appConfig.Debug),
config.LoadOptionThreads(appConfig.Threads),
config.LoadOptionContextSize(appConfig.ContextSize),
config.LoadOptionF16(appConfig.F16),
)
if err != nil {
modelFile = input.ModelID
log.Warn().Str("Request ModelID", input.ModelID).Err(err).Msg("error during LoadBackendConfigFileByName, using request ModelID")
} else {
if input.ModelID != "" {
modelFile = input.ModelID
} else {
modelFile = cfg.Model
}
}
log.Debug().Str("modelFile", "modelFile").Str("backend", cfg.Backend).Msg("Sound Generation Request about to be sent to backend")
if input.Duration != nil {
log.Debug().Float32("duration", *input.Duration).Msg("duration set")
}
if input.Temperature != nil {
log.Debug().Float32("temperature", *input.Temperature).Msg("temperature set")
}
// TODO: Support uploading files?
filePath, _, err := backend.SoundGeneration(cfg.Backend, modelFile, input.Text, input.Duration, input.Temperature, input.DoSample, nil, nil, ml, appConfig, *cfg)
if err != nil {
return err
}
return c.Download(filePath)
}
}

View File

@ -0,0 +1,29 @@
package localai
import (
"github.com/gofiber/fiber/v2"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/model"
)
// SystemInformations returns the system informations
// @Summary Show the LocalAI instance information
// @Success 200 {object} schema.SystemInformationResponse "Response"
// @Router /system [get]
func SystemInformations(ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(*fiber.Ctx) error {
return func(c *fiber.Ctx) error {
availableBackends, err := ml.ListAvailableBackends(appConfig.AssetsDestination)
if err != nil {
return err
}
for b := range appConfig.ExternalGRPCBackends {
availableBackends = append(availableBackends, b)
}
return c.JSON(
schema.SystemInformationResponse{
Backends: availableBackends,
},
)
}
}

View File

@ -25,9 +25,8 @@ import (
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/chat/completions [post]
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
textContentToReturn := ""
id := uuid.New().String()
created := int(time.Now().Unix())
var id, textContentToReturn string
var created int
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
initialMessage := schema.OpenAIResponse{
@ -69,9 +68,9 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
textContentToReturn = functions.ParseTextContent(result, config.FunctionsConfig)
result = functions.CleanupLLMResult(result, config.FunctionsConfig)
results := functions.ParseFunctionCall(result, config.FunctionsConfig)
functionResults := functions.ParseFunctionCall(result, config.FunctionsConfig)
log.Debug().Msgf("Text content to return: %s", textContentToReturn)
noActionToRun := len(results) > 0 && results[0].Name == noAction || len(results) == 0
noActionToRun := len(functionResults) > 0 && functionResults[0].Name == noAction || len(functionResults) == 0
switch {
case noActionToRun:
@ -84,7 +83,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
}
responses <- initialMessage
result, err := handleQuestion(config, req, ml, startupOptions, results, result, prompt)
result, err := handleQuestion(config, req, ml, startupOptions, functionResults, result, prompt)
if err != nil {
log.Error().Err(err).Msg("error handling question")
return
@ -106,7 +105,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
responses <- resp
default:
for i, ss := range results {
for i, ss := range functionResults {
name, args := ss.Name, ss.Arguments
initialMessage := schema.OpenAIResponse{
@ -159,6 +158,10 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
}
return func(c *fiber.Ctx) error {
textContentToReturn = ""
id = uuid.New().String()
created = int(time.Now().Unix())
modelFile, input, err := readRequest(c, cl, ml, startupOptions, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)

View File

@ -0,0 +1,93 @@
package middleware
import (
"crypto/subtle"
"errors"
"github.com/dave-gray101/v2keyauth"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/keyauth"
"github.com/mudler/LocalAI/core/config"
)
// This file contains the configuration generators and handler functions that are used along with the fiber/keyauth middleware
// Currently this requires an upstream patch - and feature patches are no longer accepted to v2
// Therefore `dave-gray101/v2keyauth` contains the v2 backport of the middleware until v3 stabilizes and we migrate.
func GetKeyAuthConfig(applicationConfig *config.ApplicationConfig) (*v2keyauth.Config, error) {
customLookup, err := v2keyauth.MultipleKeySourceLookup([]string{"header:Authorization", "header:x-api-key", "header:xi-api-key"}, keyauth.ConfigDefault.AuthScheme)
if err != nil {
return nil, err
}
return &v2keyauth.Config{
CustomKeyLookup: customLookup,
Next: getApiKeyRequiredFilterFunction(applicationConfig),
Validator: getApiKeyValidationFunction(applicationConfig),
ErrorHandler: getApiKeyErrorHandler(applicationConfig),
AuthScheme: "Bearer",
}, nil
}
func getApiKeyErrorHandler(applicationConfig *config.ApplicationConfig) fiber.ErrorHandler {
return func(ctx *fiber.Ctx, err error) error {
if errors.Is(err, v2keyauth.ErrMissingOrMalformedAPIKey) {
if len(applicationConfig.ApiKeys) == 0 {
return ctx.Next() // if no keys are set up, any error we get here is not an error.
}
if applicationConfig.OpaqueErrors {
return ctx.SendStatus(403)
}
}
if applicationConfig.OpaqueErrors {
return ctx.SendStatus(500)
}
return err
}
}
func getApiKeyValidationFunction(applicationConfig *config.ApplicationConfig) func(*fiber.Ctx, string) (bool, error) {
if applicationConfig.UseSubtleKeyComparison {
return func(ctx *fiber.Ctx, apiKey string) (bool, error) {
if len(applicationConfig.ApiKeys) == 0 {
return true, nil // If no keys are setup, accept everything
}
for _, validKey := range applicationConfig.ApiKeys {
if subtle.ConstantTimeCompare([]byte(apiKey), []byte(validKey)) == 1 {
return true, nil
}
}
return false, v2keyauth.ErrMissingOrMalformedAPIKey
}
}
return func(ctx *fiber.Ctx, apiKey string) (bool, error) {
if len(applicationConfig.ApiKeys) == 0 {
return true, nil // If no keys are setup, accept everything
}
for _, validKey := range applicationConfig.ApiKeys {
if apiKey == validKey {
return true, nil
}
}
return false, v2keyauth.ErrMissingOrMalformedAPIKey
}
}
func getApiKeyRequiredFilterFunction(applicationConfig *config.ApplicationConfig) func(*fiber.Ctx) bool {
if applicationConfig.DisableApiKeyRequirementForHttpGet {
return func(c *fiber.Ctx) bool {
if c.Method() != "GET" {
return false
}
for _, rx := range applicationConfig.HttpGetExemptedEndpoints {
if rx.MatchString(c.Path()) {
return true
}
}
return false
}
}
return func(c *fiber.Ctx) bool { return false }
}

View File

@ -10,10 +10,11 @@ import (
func RegisterElevenLabsRoutes(app *fiber.App,
cl *config.BackendConfigLoader,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
auth func(*fiber.Ctx) error) {
appConfig *config.ApplicationConfig) {
// Elevenlabs
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
app.Post("/v1/text-to-speech/:voice-id", elevenlabs.TTSEndpoint(cl, ml, appConfig))
app.Post("/v1/sound-generation", elevenlabs.SoundGenerationEndpoint(cl, ml, appConfig))
}

View File

@ -11,8 +11,7 @@ import (
func RegisterJINARoutes(app *fiber.App,
cl *config.BackendConfigLoader,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
auth func(*fiber.Ctx) error) {
appConfig *config.ApplicationConfig) {
// POST endpoint to mimic the reranking
app.Post("/v1/rerank", jina.JINARerankEndpoint(cl, ml, appConfig))

View File

@ -15,33 +15,32 @@ func RegisterLocalAIRoutes(app *fiber.App,
cl *config.BackendConfigLoader,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
galleryService *services.GalleryService,
auth func(*fiber.Ctx) error) {
galleryService *services.GalleryService) {
app.Get("/swagger/*", swagger.HandlerDefault) // default
// LocalAI API endpoints
if !appConfig.DisableGalleryEndpoint {
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
app.Post("/models/delete/:name", auth, modelGalleryEndpointService.DeleteModelGalleryEndpoint())
app.Post("/models/apply", modelGalleryEndpointService.ApplyModelGalleryEndpoint())
app.Post("/models/delete/:name", modelGalleryEndpointService.DeleteModelGalleryEndpoint())
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
app.Post("/models/galleries", auth, modelGalleryEndpointService.AddModelGalleryEndpoint())
app.Delete("/models/galleries", auth, modelGalleryEndpointService.RemoveModelGalleryEndpoint())
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
app.Get("/models/available", modelGalleryEndpointService.ListModelFromGalleryEndpoint())
app.Get("/models/galleries", modelGalleryEndpointService.ListModelGalleriesEndpoint())
app.Post("/models/galleries", modelGalleryEndpointService.AddModelGalleryEndpoint())
app.Delete("/models/galleries", modelGalleryEndpointService.RemoveModelGalleryEndpoint())
app.Get("/models/jobs/:uuid", modelGalleryEndpointService.GetOpStatusEndpoint())
app.Get("/models/jobs", modelGalleryEndpointService.GetAllStatusEndpoint())
}
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
app.Post("/tts", localai.TTSEndpoint(cl, ml, appConfig))
// Stores
sl := model.NewModelLoader("")
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
app.Post("/stores/set", localai.StoresSetEndpoint(sl, appConfig))
app.Post("/stores/delete", localai.StoresDeleteEndpoint(sl, appConfig))
app.Post("/stores/get", localai.StoresGetEndpoint(sl, appConfig))
app.Post("/stores/find", localai.StoresFindEndpoint(sl, appConfig))
// Kubernetes health checks
ok := func(c *fiber.Ctx) error {
@ -51,23 +50,25 @@ func RegisterLocalAIRoutes(app *fiber.App,
app.Get("/healthz", ok)
app.Get("/readyz", ok)
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())
app.Get("/metrics", localai.LocalAIMetricsEndpoint())
// Experimental Backend Statistics Module
backendMonitorService := services.NewBackendMonitorService(ml, cl, appConfig) // Split out for now
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(backendMonitorService))
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(backendMonitorService))
app.Get("/backend/monitor", localai.BackendMonitorEndpoint(backendMonitorService))
app.Post("/backend/shutdown", localai.BackendShutdownEndpoint(backendMonitorService))
// p2p
if p2p.IsP2PEnabled() {
app.Get("/api/p2p", auth, localai.ShowP2PNodes(appConfig))
app.Get("/api/p2p/token", auth, localai.ShowP2PToken(appConfig))
app.Get("/api/p2p", localai.ShowP2PNodes(appConfig))
app.Get("/api/p2p/token", localai.ShowP2PToken(appConfig))
}
app.Get("/version", auth, func(c *fiber.Ctx) error {
app.Get("/version", func(c *fiber.Ctx) error {
return c.JSON(struct {
Version string `json:"version"`
}{Version: internal.PrintableVersion()})
})
app.Get("/system", auth, localai.SystemInformations(ml, appConfig))
}

View File

@ -11,66 +11,65 @@ import (
func RegisterOpenAIRoutes(app *fiber.App,
cl *config.BackendConfigLoader,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
auth func(*fiber.Ctx) error) {
appConfig *config.ApplicationConfig) {
// openAI compatible API endpoint
// chat
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
app.Post("/v1/chat/completions", openai.ChatEndpoint(cl, ml, appConfig))
app.Post("/chat/completions", openai.ChatEndpoint(cl, ml, appConfig))
// edit
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
app.Post("/v1/edits", openai.EditEndpoint(cl, ml, appConfig))
app.Post("/edits", openai.EditEndpoint(cl, ml, appConfig))
// assistant
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants", openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Get("/assistants", openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants", openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants", openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id", openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id", openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id", openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id", openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id", openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id", openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files", openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files", openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id/files", openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id/files", openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id/files/:file_id", openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files/:file_id", openai.GetAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files/:file_id", openai.GetAssistantFileEndpoint(cl, ml, appConfig))
// files
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
app.Post("/v1/files", openai.UploadFilesEndpoint(cl, appConfig))
app.Post("/files", openai.UploadFilesEndpoint(cl, appConfig))
app.Get("/v1/files", openai.ListFilesEndpoint(cl, appConfig))
app.Get("/files", openai.ListFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id", openai.GetFilesEndpoint(cl, appConfig))
app.Get("/files/:file_id", openai.GetFilesEndpoint(cl, appConfig))
app.Delete("/v1/files/:file_id", openai.DeleteFilesEndpoint(cl, appConfig))
app.Delete("/files/:file_id", openai.DeleteFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id/content", openai.GetFilesContentsEndpoint(cl, appConfig))
app.Get("/files/:file_id/content", openai.GetFilesContentsEndpoint(cl, appConfig))
// completion
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/v1/completions", openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/completions", openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/completions", openai.CompletionEndpoint(cl, ml, appConfig))
// embeddings
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/v1/embeddings", openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/embeddings", openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/embeddings", openai.EmbeddingsEndpoint(cl, ml, appConfig))
// audio
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
app.Post("/v1/audio/transcriptions", openai.TranscriptEndpoint(cl, ml, appConfig))
app.Post("/v1/audio/speech", localai.TTSEndpoint(cl, ml, appConfig))
// images
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
app.Post("/v1/images/generations", openai.ImageEndpoint(cl, ml, appConfig))
if appConfig.ImageDir != "" {
app.Static("/generated-images", appConfig.ImageDir)
@ -81,6 +80,6 @@ func RegisterOpenAIRoutes(app *fiber.App,
}
// List models
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/v1/models", openai.ListModelsEndpoint(cl, ml))
app.Get("/models", openai.ListModelsEndpoint(cl, ml))
}

View File

@ -59,8 +59,7 @@ func RegisterUIRoutes(app *fiber.App,
cl *config.BackendConfigLoader,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
galleryService *services.GalleryService,
auth func(*fiber.Ctx) error) {
galleryService *services.GalleryService) {
// keeps the state of models that are being installed from the UI
var processingModels = NewModelOpCache()
@ -85,10 +84,10 @@ func RegisterUIRoutes(app *fiber.App,
return processingModelsData, taskTypes
}
app.Get("/", auth, localai.WelcomeEndpoint(appConfig, cl, ml, modelStatus))
app.Get("/", localai.WelcomeEndpoint(appConfig, cl, ml, modelStatus))
if p2p.IsP2PEnabled() {
app.Get("/p2p", auth, func(c *fiber.Ctx) error {
app.Get("/p2p", func(c *fiber.Ctx) error {
summary := fiber.Map{
"Title": "LocalAI - P2P dashboard",
"Version": internal.PrintableVersion(),
@ -104,17 +103,17 @@ func RegisterUIRoutes(app *fiber.App,
})
/* show nodes live! */
app.Get("/p2p/ui/workers", auth, func(c *fiber.Ctx) error {
app.Get("/p2p/ui/workers", func(c *fiber.Ctx) error {
return c.SendString(elements.P2PNodeBoxes(p2p.GetAvailableNodes(p2p.NetworkID(appConfig.P2PNetworkID, p2p.WorkerID))))
})
app.Get("/p2p/ui/workers-federation", auth, func(c *fiber.Ctx) error {
app.Get("/p2p/ui/workers-federation", func(c *fiber.Ctx) error {
return c.SendString(elements.P2PNodeBoxes(p2p.GetAvailableNodes(p2p.NetworkID(appConfig.P2PNetworkID, p2p.FederatedID))))
})
app.Get("/p2p/ui/workers-stats", auth, func(c *fiber.Ctx) error {
app.Get("/p2p/ui/workers-stats", func(c *fiber.Ctx) error {
return c.SendString(elements.P2PNodeStats(p2p.GetAvailableNodes(p2p.NetworkID(appConfig.P2PNetworkID, p2p.WorkerID))))
})
app.Get("/p2p/ui/workers-federation-stats", auth, func(c *fiber.Ctx) error {
app.Get("/p2p/ui/workers-federation-stats", func(c *fiber.Ctx) error {
return c.SendString(elements.P2PNodeStats(p2p.GetAvailableNodes(p2p.NetworkID(appConfig.P2PNetworkID, p2p.FederatedID))))
})
}
@ -122,7 +121,7 @@ func RegisterUIRoutes(app *fiber.App,
if !appConfig.DisableGalleryEndpoint {
// Show the Models page (all models)
app.Get("/browse", auth, func(c *fiber.Ctx) error {
app.Get("/browse", func(c *fiber.Ctx) error {
term := c.Query("term")
models, _ := gallery.AvailableGalleryModels(appConfig.Galleries, appConfig.ModelPath)
@ -167,7 +166,7 @@ func RegisterUIRoutes(app *fiber.App,
// Show the models, filtered from the user input
// https://htmx.org/examples/active-search/
app.Post("/browse/search/models", auth, func(c *fiber.Ctx) error {
app.Post("/browse/search/models", func(c *fiber.Ctx) error {
form := struct {
Search string `form:"search"`
}{}
@ -188,7 +187,7 @@ func RegisterUIRoutes(app *fiber.App,
// This route is used when the "Install" button is pressed, we submit here a new job to the gallery service
// https://htmx.org/examples/progress-bar/
app.Post("/browse/install/model/:id", auth, func(c *fiber.Ctx) error {
app.Post("/browse/install/model/:id", func(c *fiber.Ctx) error {
galleryID := strings.Clone(c.Params("id")) // note: strings.Clone is required for multiple requests!
log.Debug().Msgf("UI job submitted to install : %+v\n", galleryID)
@ -215,7 +214,7 @@ func RegisterUIRoutes(app *fiber.App,
// This route is used when the "Install" button is pressed, we submit here a new job to the gallery service
// https://htmx.org/examples/progress-bar/
app.Post("/browse/delete/model/:id", auth, func(c *fiber.Ctx) error {
app.Post("/browse/delete/model/:id", func(c *fiber.Ctx) error {
galleryID := strings.Clone(c.Params("id")) // note: strings.Clone is required for multiple requests!
log.Debug().Msgf("UI job submitted to delete : %+v\n", galleryID)
var galleryName = galleryID
@ -255,7 +254,7 @@ func RegisterUIRoutes(app *fiber.App,
// Display the job current progress status
// If the job is done, we trigger the /browse/job/:uid route
// https://htmx.org/examples/progress-bar/
app.Get("/browse/job/progress/:uid", auth, func(c *fiber.Ctx) error {
app.Get("/browse/job/progress/:uid", func(c *fiber.Ctx) error {
jobUID := strings.Clone(c.Params("uid")) // note: strings.Clone is required for multiple requests!
status := galleryService.GetStatus(jobUID)
@ -279,7 +278,7 @@ func RegisterUIRoutes(app *fiber.App,
// this route is hit when the job is done, and we display the
// final state (for now just displays "Installation completed")
app.Get("/browse/job/:uid", auth, func(c *fiber.Ctx) error {
app.Get("/browse/job/:uid", func(c *fiber.Ctx) error {
jobUID := strings.Clone(c.Params("uid")) // note: strings.Clone is required for multiple requests!
status := galleryService.GetStatus(jobUID)
@ -303,7 +302,7 @@ func RegisterUIRoutes(app *fiber.App,
}
// Show the Chat page
app.Get("/chat/:model", auth, func(c *fiber.Ctx) error {
app.Get("/chat/:model", func(c *fiber.Ctx) error {
backendConfigs, _ := services.ListModels(cl, ml, "", true)
summary := fiber.Map{
@ -318,7 +317,7 @@ func RegisterUIRoutes(app *fiber.App,
return c.Render("views/chat", summary)
})
app.Get("/talk/", auth, func(c *fiber.Ctx) error {
app.Get("/talk/", func(c *fiber.Ctx) error {
backendConfigs, _ := services.ListModels(cl, ml, "", true)
if len(backendConfigs) == 0 {
@ -338,7 +337,7 @@ func RegisterUIRoutes(app *fiber.App,
return c.Render("views/talk", summary)
})
app.Get("/chat/", auth, func(c *fiber.Ctx) error {
app.Get("/chat/", func(c *fiber.Ctx) error {
backendConfigs, _ := services.ListModels(cl, ml, "", true)
@ -359,7 +358,7 @@ func RegisterUIRoutes(app *fiber.App,
return c.Render("views/chat", summary)
})
app.Get("/text2image/:model", auth, func(c *fiber.Ctx) error {
app.Get("/text2image/:model", func(c *fiber.Ctx) error {
backendConfigs := cl.GetAllBackendConfigs()
summary := fiber.Map{
@ -374,7 +373,7 @@ func RegisterUIRoutes(app *fiber.App,
return c.Render("views/text2image", summary)
})
app.Get("/text2image/", auth, func(c *fiber.Ctx) error {
app.Get("/text2image/", func(c *fiber.Ctx) error {
backendConfigs := cl.GetAllBackendConfigs()
@ -395,7 +394,7 @@ func RegisterUIRoutes(app *fiber.App,
return c.Render("views/text2image", summary)
})
app.Get("/tts/:model", auth, func(c *fiber.Ctx) error {
app.Get("/tts/:model", func(c *fiber.Ctx) error {
backendConfigs := cl.GetAllBackendConfigs()
summary := fiber.Map{
@ -410,7 +409,7 @@ func RegisterUIRoutes(app *fiber.App,
return c.Render("views/tts", summary)
})
app.Get("/tts/", auth, func(c *fiber.Ctx) error {
app.Get("/tts/", func(c *fiber.Ctx) error {
backendConfigs := cl.GetAllBackendConfigs()

View File

@ -6,11 +6,7 @@
rel="stylesheet"
href="/static/assets/highlightjs.css"
/>
<script defer src="/static/assets/anime.min.js"></script>
<script
defer
src="/static/assets/highlightjs.js"
></script>
<script defer src="/static/assets/highlightjs.js"></script>
<script
defer
src="/static/assets/alpine.js"

View File

@ -28,9 +28,15 @@ import (
"github.com/mudler/edgevpn/pkg/logger"
)
func generateNewConnectionData() *node.YAMLConnectionConfig {
func generateNewConnectionData(DHTInterval, OTPInterval int) *node.YAMLConnectionConfig {
maxMessSize := 20 << 20 // 20MB
keyLength := 43
if DHTInterval == 0 {
DHTInterval = 360
}
if OTPInterval == 0 {
OTPInterval = 9000
}
return &node.YAMLConnectionConfig{
MaxMessageSize: maxMessSize,
@ -40,21 +46,21 @@ func generateNewConnectionData() *node.YAMLConnectionConfig {
OTP: node.OTP{
DHT: node.OTPConfig{
Key: eutils.RandStringRunes(keyLength),
Interval: 120,
Interval: DHTInterval,
Length: keyLength,
},
Crypto: node.OTPConfig{
Key: eutils.RandStringRunes(keyLength),
Interval: 9000,
Interval: OTPInterval,
Length: keyLength,
},
},
}
}
func GenerateToken() string {
func GenerateToken(DHTInterval, OTPInterval int) string {
// Generates a new config and exit
return generateNewConnectionData().Base64()
return generateNewConnectionData(DHTInterval, OTPInterval).Base64()
}
func IsP2PEnabled() bool {
@ -202,13 +208,9 @@ func ServiceDiscoverer(ctx context.Context, n *node.Node, token, servicesID stri
func discoveryTunnels(ctx context.Context, n *node.Node, token, servicesID string, allocate bool) (chan NodeData, error) {
tunnels := make(chan NodeData)
err := n.Start(ctx)
if err != nil {
return nil, fmt.Errorf("creating a new node: %w", err)
}
ledger, err := n.Ledger()
if err != nil {
return nil, fmt.Errorf("creating a new node: %w", err)
return nil, fmt.Errorf("getting the ledger: %w", err)
}
// get new services, allocate and return to the channel

View File

@ -10,7 +10,7 @@ import (
"github.com/mudler/edgevpn/pkg/node"
)
func GenerateToken() string {
func GenerateToken(DHTInterval, OTPInterval int) string {
return "not implemented"
}

Some files were not shown because too many files have changed in this diff Show More