mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-12 07:52:54 +00:00
126 lines
4.7 KiB
Python
126 lines
4.7 KiB
Python
|
#!/usr/bin/env python3
|
||
|
"""
|
||
|
Extra gRPC server for MusicgenForConditionalGeneration models.
|
||
|
"""
|
||
|
from concurrent import futures
|
||
|
|
||
|
import argparse
|
||
|
import signal
|
||
|
import sys
|
||
|
import os
|
||
|
|
||
|
import time
|
||
|
import backend_pb2
|
||
|
import backend_pb2_grpc
|
||
|
|
||
|
import grpc
|
||
|
|
||
|
from scipy.io.wavfile import write as write_wav
|
||
|
|
||
|
from parler_tts import ParlerTTSForConditionalGeneration
|
||
|
from transformers import AutoTokenizer
|
||
|
import soundfile as sf
|
||
|
import torch
|
||
|
|
||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||
|
|
||
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||
|
|
||
|
# Implement the BackendServicer class with the service methods
|
||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||
|
"""
|
||
|
A gRPC servicer for the backend service.
|
||
|
|
||
|
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||
|
"""
|
||
|
def Health(self, request, context):
|
||
|
"""
|
||
|
A gRPC method that returns the health status of the backend service.
|
||
|
|
||
|
Args:
|
||
|
request: A HealthRequest object that contains the request parameters.
|
||
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
||
|
|
||
|
Returns:
|
||
|
A Reply object that contains the health status of the backend service.
|
||
|
"""
|
||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||
|
|
||
|
def LoadModel(self, request, context):
|
||
|
"""
|
||
|
A gRPC method that loads a model into memory.
|
||
|
|
||
|
Args:
|
||
|
request: A LoadModelRequest object that contains the request parameters.
|
||
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
||
|
|
||
|
Returns:
|
||
|
A Result object that contains the result of the LoadModel operation.
|
||
|
"""
|
||
|
model_name = request.Model
|
||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||
|
try:
|
||
|
self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device)
|
||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
|
||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||
|
|
||
|
def TTS(self, request, context):
|
||
|
model_name = request.model
|
||
|
voice = request.voice
|
||
|
if voice == "":
|
||
|
voice = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
|
||
|
if model_name == "":
|
||
|
return backend_pb2.Result(success=False, message="request.model is required")
|
||
|
try:
|
||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||
|
input_ids = self.tokenizer(voice, return_tensors="pt").input_ids.to(device)
|
||
|
prompt_input_ids = self.tokenizer(request.text, return_tensors="pt").input_ids.to(device)
|
||
|
|
||
|
generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
||
|
audio_arr = generation.cpu().numpy().squeeze()
|
||
|
print("[parler-tts] TTS generated!", file=sys.stderr)
|
||
|
sf.write(request.dst, audio_arr, self.model.config.sampling_rate)
|
||
|
print("[parler-tts] TTS saved to", request.dst, file=sys.stderr)
|
||
|
print("[parler-tts] TTS for", file=sys.stderr)
|
||
|
print(request, file=sys.stderr)
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
return backend_pb2.Result(success=True)
|
||
|
|
||
|
|
||
|
def serve(address):
|
||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||
|
server.add_insecure_port(address)
|
||
|
server.start()
|
||
|
print("[parler-tts] Server started. Listening on: " + address, file=sys.stderr)
|
||
|
|
||
|
# Define the signal handler function
|
||
|
def signal_handler(sig, frame):
|
||
|
print("[parler-tts] Received termination signal. Shutting down...")
|
||
|
server.stop(0)
|
||
|
sys.exit(0)
|
||
|
|
||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||
|
signal.signal(signal.SIGINT, signal_handler)
|
||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||
|
|
||
|
try:
|
||
|
while True:
|
||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||
|
except KeyboardInterrupt:
|
||
|
server.stop(0)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||
|
parser.add_argument(
|
||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
print(f"[parler-tts] startup: {args}", file=sys.stderr)
|
||
|
serve(args.addr)
|