mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-22 04:18:36 +00:00
166 lines
6.8 KiB
Python
166 lines
6.8 KiB
Python
|
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
|
|||
|
import phonemizer
|
|||
|
import re
|
|||
|
import torch
|
|||
|
import numpy as np
|
|||
|
|
|||
|
def split_num(num):
|
|||
|
num = num.group()
|
|||
|
if '.' in num:
|
|||
|
return num
|
|||
|
elif ':' in num:
|
|||
|
h, m = [int(n) for n in num.split(':')]
|
|||
|
if m == 0:
|
|||
|
return f"{h} o'clock"
|
|||
|
elif m < 10:
|
|||
|
return f'{h} oh {m}'
|
|||
|
return f'{h} {m}'
|
|||
|
year = int(num[:4])
|
|||
|
if year < 1100 or year % 1000 < 10:
|
|||
|
return num
|
|||
|
left, right = num[:2], int(num[2:4])
|
|||
|
s = 's' if num.endswith('s') else ''
|
|||
|
if 100 <= year % 1000 <= 999:
|
|||
|
if right == 0:
|
|||
|
return f'{left} hundred{s}'
|
|||
|
elif right < 10:
|
|||
|
return f'{left} oh {right}{s}'
|
|||
|
return f'{left} {right}{s}'
|
|||
|
|
|||
|
def flip_money(m):
|
|||
|
m = m.group()
|
|||
|
bill = 'dollar' if m[0] == '$' else 'pound'
|
|||
|
if m[-1].isalpha():
|
|||
|
return f'{m[1:]} {bill}s'
|
|||
|
elif '.' not in m:
|
|||
|
s = '' if m[1:] == '1' else 's'
|
|||
|
return f'{m[1:]} {bill}{s}'
|
|||
|
b, c = m[1:].split('.')
|
|||
|
s = '' if b == '1' else 's'
|
|||
|
c = int(c.ljust(2, '0'))
|
|||
|
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
|||
|
return f'{b} {bill}{s} and {c} {coins}'
|
|||
|
|
|||
|
def point_num(num):
|
|||
|
a, b = num.group().split('.')
|
|||
|
return ' point '.join([a, ' '.join(b)])
|
|||
|
|
|||
|
def normalize_text(text):
|
|||
|
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
|||
|
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
|||
|
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
|||
|
text = text.replace('(', '«').replace(')', '»')
|
|||
|
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
|||
|
text = text.replace(a, b+' ')
|
|||
|
text = re.sub(r'[^\S \n]', ' ', text)
|
|||
|
text = re.sub(r' +', ' ', text)
|
|||
|
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
|||
|
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
|||
|
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
|||
|
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
|||
|
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
|||
|
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
|||
|
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
|||
|
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
|||
|
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
|||
|
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
|||
|
text = re.sub(r'\d*\.\d+', point_num, text)
|
|||
|
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
|||
|
text = re.sub(r'(?<=\d)S', ' S', text)
|
|||
|
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
|||
|
text = re.sub(r"(?<=X')S\b", 's', text)
|
|||
|
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
|||
|
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
|||
|
return text.strip()
|
|||
|
|
|||
|
def get_vocab():
|
|||
|
_pad = "$"
|
|||
|
_punctuation = ';:,.!?¡¿—…"«»“” '
|
|||
|
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
|||
|
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
|||
|
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
|||
|
dicts = {}
|
|||
|
for i in range(len((symbols))):
|
|||
|
dicts[symbols[i]] = i
|
|||
|
return dicts
|
|||
|
|
|||
|
VOCAB = get_vocab()
|
|||
|
def tokenize(ps):
|
|||
|
return [i for i in map(VOCAB.get, ps) if i is not None]
|
|||
|
|
|||
|
phonemizers = dict(
|
|||
|
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
|
|||
|
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
|
|||
|
)
|
|||
|
def phonemize(text, lang, norm=True):
|
|||
|
if norm:
|
|||
|
text = normalize_text(text)
|
|||
|
ps = phonemizers[lang].phonemize([text])
|
|||
|
ps = ps[0] if ps else ''
|
|||
|
# https://en.wiktionary.org/wiki/kokoro#English
|
|||
|
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
|||
|
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
|||
|
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
|||
|
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
|||
|
if lang == 'a':
|
|||
|
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
|||
|
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
|||
|
return ps.strip()
|
|||
|
|
|||
|
def length_to_mask(lengths):
|
|||
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
|||
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
|||
|
return mask
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
def forward(model, tokens, ref_s, speed):
|
|||
|
device = ref_s.device
|
|||
|
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
|||
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
|||
|
text_mask = length_to_mask(input_lengths).to(device)
|
|||
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
|||
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
|||
|
s = ref_s[:, 128:]
|
|||
|
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
|||
|
x, _ = model.predictor.lstm(d)
|
|||
|
duration = model.predictor.duration_proj(x)
|
|||
|
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
|||
|
pred_dur = torch.round(duration).clamp(min=1).long()
|
|||
|
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
|||
|
c_frame = 0
|
|||
|
for i in range(pred_aln_trg.size(0)):
|
|||
|
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
|||
|
c_frame += pred_dur[0,i].item()
|
|||
|
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
|||
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
|||
|
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
|||
|
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
|||
|
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
|||
|
|
|||
|
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
|||
|
ps = ps or phonemize(text, lang)
|
|||
|
tokens = tokenize(ps)
|
|||
|
if not tokens:
|
|||
|
return None
|
|||
|
elif len(tokens) > 510:
|
|||
|
tokens = tokens[:510]
|
|||
|
print('Truncated to 510 tokens')
|
|||
|
ref_s = voicepack[len(tokens)]
|
|||
|
out = forward(model, tokens, ref_s, speed)
|
|||
|
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
|||
|
return out, ps
|
|||
|
|
|||
|
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
|
|||
|
ps = ps or phonemize(text, lang)
|
|||
|
tokens = tokenize(ps)
|
|||
|
if not tokens:
|
|||
|
return None
|
|||
|
outs = []
|
|||
|
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
|
|||
|
for i in range(loop_count):
|
|||
|
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
|
|||
|
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
|
|||
|
outs.append(out)
|
|||
|
outs = np.concatenate(outs)
|
|||
|
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
|||
|
return outs, ps
|