2023-03-20 20:30:55 +00:00
## :camel: llama-cli
llama-cli is a straightforward golang CLI interface for [llama.cpp ](https://github.com/ggerganov/llama.cpp ), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
## Container images
2023-03-26 21:37:26 +00:00
To begin, run:
2023-03-20 20:30:55 +00:00
```
2023-03-23 21:06:41 +00:00
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.3 --instruction "What's an alpaca?" --topk 10000
2023-03-20 20:30:55 +00:00
```
You will receive a response like the following:
```
An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuña. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.
```
## Basic usage
2023-03-21 17:45:59 +00:00
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:
2023-03-20 20:30:55 +00:00
```
llama-cli --model < model_path > --instruction < instruction > [--input < input > ] [--template < template_path > ] [--tokens < num_tokens > ] [--threads < num_threads > ] [--temperature < temperature > ] [--topp < top_p > ] [--topk < top_k > ]
```
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| template | TEMPLATE | | A file containing a template for output formatting (optional). |
| instruction | INSTRUCTION | | Input prompt text or instruction. "-" for STDIN. |
| input | INPUT | - | Path to text or "-" for STDIN. |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| tokens | TOKENS | 128 | The maximum number of tokens to generate. |
| threads | THREADS | NumCPU() | The number of threads to use for text generation. |
2023-03-23 18:25:28 +00:00
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. ( values between `0.1` and `1.0` ) |
2023-03-20 20:30:55 +00:00
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
2023-03-23 17:57:25 +00:00
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
2023-03-29 16:58:54 +00:00
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
2023-03-20 20:30:55 +00:00
Here's an example of using `llama-cli` :
```
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
```
This will generate text based on the given model and instruction.
## Advanced usage
2023-03-23 21:06:41 +00:00
`llama-cli` also provides an API for running text generation as a service. The model will be pre-loaded and kept in memory.
2023-03-21 17:45:59 +00:00
Example of starting the API with `docker` :
```bash
2023-03-23 21:06:41 +00:00
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.3 api --context-size 700 --threads 4
2023-03-21 17:45:59 +00:00
```
And you'll see:
```
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
```
You can control the API server options with command line arguments:
2023-03-20 20:30:55 +00:00
```
llama-cli api --model < model_path > [--address < address > ] [--threads < num_threads > ]
```
2023-03-21 17:45:59 +00:00
The API takes takes the following:
2023-03-20 20:30:55 +00:00
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
| address | ADDRESS | :8080 | The address and port to listen on. |
2023-03-23 17:57:25 +00:00
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
2023-03-29 16:58:54 +00:00
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
2023-03-20 20:30:55 +00:00
Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
```
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
```
2023-03-23 18:25:28 +00:00
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
```
2023-03-21 23:18:48 +00:00
## Using other models
2023-03-29 16:58:54 +00:00
You can specify a model binary to be used for inference with `--model` .
2023-03-23 17:57:25 +00:00
2023-03-29 16:58:54 +00:00
13B and 30B alpaca models are known to work:
2023-03-21 23:18:48 +00:00
```
2023-03-23 17:57:25 +00:00
# Download the model image, extract the model
2023-03-21 23:18:48 +00:00
# Use the model with llama-cli
2023-03-23 21:06:41 +00:00
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.3-lite api --model /models/model.bin
2023-03-21 23:18:48 +00:00
```
2023-03-29 16:58:54 +00:00
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted:
```bash
wget -O tokenizer.model https://huggingface.co/decapoda-research/llama-30b-hf/resolve/main/tokenizer.model
mkdir models
cp gpt4all.. models/
git clone https://gist.github.com/eiz/828bddec6162a023114ce19146cb2b82
pip install sentencepiece
python 828bddec6162a023114ce19146cb2b82/gistfile1.txt models tokenizer.model
```
2023-03-20 22:25:39 +00:00
### Golang client API
The `llama-cli` codebase has also a small client in go that can be used alongside with the api:
```golang
package main
import (
"fmt"
client "github.com/go-skynet/llama-cli/client"
)
func main() {
cli := client.NewClient("http://ip:30007")
out, err := cli.Predict("What's an alpaca?")
if err != nil {
panic(err)
}
fmt.Println(out)
}
```
2023-03-20 20:30:55 +00:00
### Kubernetes
You can run the API directly in Kubernetes:
```bash
kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml
2023-03-24 00:11:13 +00:00
```
### Build locally
Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.
In order to build the `llama-cli` container image locally you can use `docker` :
```
# build the image as "alpaca-image"
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +image --IMAGE=alpaca-image
# run the image
docker run alpaca-image --instruction "What's an alpaca?"
```
Or build the binary with:
```
# build the image as "alpaca-image"
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +build
# run the binary
./llama-cli --instruction "What's an alpaca?"
```