mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-26 06:09:30 +00:00
76 lines
2.8 KiB
Python
76 lines
2.8 KiB
Python
|
import openai
|
||
|
import json
|
||
|
|
||
|
# Example dummy function hard coded to return the same weather
|
||
|
# In production, this could be your backend API or an external API
|
||
|
def get_current_weather(location, unit="fahrenheit"):
|
||
|
"""Get the current weather in a given location"""
|
||
|
weather_info = {
|
||
|
"location": location,
|
||
|
"temperature": "72",
|
||
|
"unit": unit,
|
||
|
"forecast": ["sunny", "windy"],
|
||
|
}
|
||
|
return json.dumps(weather_info)
|
||
|
|
||
|
|
||
|
def run_conversation():
|
||
|
# Step 1: send the conversation and available functions to GPT
|
||
|
messages = [{"role": "user", "content": "What's the weather like in Boston?"}]
|
||
|
functions = [
|
||
|
{
|
||
|
"name": "get_current_weather",
|
||
|
"description": "Get the current weather in a given location",
|
||
|
"parameters": {
|
||
|
"type": "object",
|
||
|
"properties": {
|
||
|
"location": {
|
||
|
"type": "string",
|
||
|
"description": "The city and state, e.g. San Francisco, CA",
|
||
|
},
|
||
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||
|
},
|
||
|
"required": ["location"],
|
||
|
},
|
||
|
}
|
||
|
]
|
||
|
response = openai.ChatCompletion.create(
|
||
|
model="gpt-3.5-turbo",
|
||
|
messages=messages,
|
||
|
functions=functions,
|
||
|
function_call="auto", # auto is default, but we'll be explicit
|
||
|
)
|
||
|
response_message = response["choices"][0]["message"]
|
||
|
|
||
|
# Step 2: check if GPT wanted to call a function
|
||
|
if response_message.get("function_call"):
|
||
|
# Step 3: call the function
|
||
|
# Note: the JSON response may not always be valid; be sure to handle errors
|
||
|
available_functions = {
|
||
|
"get_current_weather": get_current_weather,
|
||
|
} # only one function in this example, but you can have multiple
|
||
|
function_name = response_message["function_call"]["name"]
|
||
|
fuction_to_call = available_functions[function_name]
|
||
|
function_args = json.loads(response_message["function_call"]["arguments"])
|
||
|
function_response = fuction_to_call(
|
||
|
location=function_args.get("location"),
|
||
|
unit=function_args.get("unit"),
|
||
|
)
|
||
|
|
||
|
# Step 4: send the info on the function call and function response to GPT
|
||
|
messages.append(response_message) # extend conversation with assistant's reply
|
||
|
messages.append(
|
||
|
{
|
||
|
"role": "function",
|
||
|
"name": function_name,
|
||
|
"content": function_response,
|
||
|
}
|
||
|
) # extend conversation with function response
|
||
|
second_response = openai.ChatCompletion.create(
|
||
|
model="gpt-3.5-turbo",
|
||
|
messages=messages,
|
||
|
) # get a new response from GPT where it can see the function response
|
||
|
return second_response
|
||
|
|
||
|
|
||
|
print(run_conversation())
|