mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-22 14:02:24 +00:00
114 lines
4.3 KiB
Python
114 lines
4.3 KiB
Python
|
#!/usr/bin/env python3
|
||
|
import grpc
|
||
|
from concurrent import futures
|
||
|
import time
|
||
|
import backend_pb2
|
||
|
import backend_pb2_grpc
|
||
|
import argparse
|
||
|
import signal
|
||
|
import sys
|
||
|
import os
|
||
|
|
||
|
# import diffusers
|
||
|
import torch
|
||
|
from torch import autocast
|
||
|
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
|
||
|
|
||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||
|
|
||
|
# Implement the BackendServicer class with the service methods
|
||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||
|
def Health(self, request, context):
|
||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||
|
def LoadModel(self, request, context):
|
||
|
try:
|
||
|
print(f"Loading model {request.Model}...", file=sys.stderr)
|
||
|
print(f"Request {request}", file=sys.stderr)
|
||
|
torchType = torch.float32
|
||
|
if request.F16Memory:
|
||
|
torchType = torch.float16
|
||
|
|
||
|
if request.PipelineType == "":
|
||
|
request.PipelineType == "StableDiffusionPipeline"
|
||
|
|
||
|
if request.PipelineType == "StableDiffusionPipeline":
|
||
|
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
|
||
|
torch_dtype=torchType)
|
||
|
|
||
|
if request.PipelineType == "DiffusionPipeline":
|
||
|
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
|
||
|
torch_dtype=torchType)
|
||
|
|
||
|
if request.PipelineType == "StableDiffusionXLPipeline":
|
||
|
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
||
|
request.Model,
|
||
|
torch_dtype=torchType,
|
||
|
use_safetensors=True,
|
||
|
# variant="fp16"
|
||
|
)
|
||
|
|
||
|
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
|
||
|
# TODO: this needs to be customized
|
||
|
if request.SchedulerType == "EulerAncestralDiscreteScheduler":
|
||
|
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
|
||
|
if request.SchedulerType == "DPMSolverMultistepScheduler":
|
||
|
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
||
|
|
||
|
if request.CUDA:
|
||
|
self.pipe.to('cuda')
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
# Implement your logic here for the LoadModel service
|
||
|
# Replace this with your desired response
|
||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||
|
def GenerateImage(self, request, context):
|
||
|
|
||
|
prompt = request.positive_prompt
|
||
|
negative_prompt = request.negative_prompt
|
||
|
|
||
|
image = self.pipe(
|
||
|
prompt,
|
||
|
negative_prompt=negative_prompt,
|
||
|
width=request.width,
|
||
|
height=request.height,
|
||
|
# guidance_scale=12,
|
||
|
target_size=(request.width,request.height),
|
||
|
original_size=(4096,4096),
|
||
|
num_inference_steps=request.step
|
||
|
).images[0]
|
||
|
|
||
|
image.save(request.dst)
|
||
|
|
||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||
|
|
||
|
def serve(address):
|
||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||
|
server.add_insecure_port(address)
|
||
|
server.start()
|
||
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
||
|
|
||
|
# Define the signal handler function
|
||
|
def signal_handler(sig, frame):
|
||
|
print("Received termination signal. Shutting down...")
|
||
|
server.stop(0)
|
||
|
sys.exit(0)
|
||
|
|
||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||
|
signal.signal(signal.SIGINT, signal_handler)
|
||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||
|
|
||
|
try:
|
||
|
while True:
|
||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||
|
except KeyboardInterrupt:
|
||
|
server.stop(0)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||
|
parser.add_argument(
|
||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
serve(args.addr)
|