2023-10-16 19:46:29 +00:00
// llama.cpp gRPC C++ backend server
//
2023-11-11 12:14:59 +00:00
// Ettore Di Giacinto <mudler@localai.io> and llama.cpp authors
2023-10-16 19:46:29 +00:00
//
// This is a gRPC server for llama.cpp compatible with the LocalAI proto
2023-11-11 12:14:59 +00:00
// Note: this is a re-adaptation of the original llama.cpp example/server.cpp for HTTP (https://github.com/ggerganov/llama.cpp/tree/master/examples/server),
2023-10-16 19:46:29 +00:00
// but modified to work with gRPC
//
# include <iostream>
# include <memory>
# include <string>
# include <getopt.h>
2024-02-21 16:23:38 +00:00
# include "clip.h"
# include "llava.h"
2023-11-11 12:14:59 +00:00
# include "stb_image.h"
2023-10-16 19:46:29 +00:00
# include "common.h"
2023-11-11 12:14:59 +00:00
# include "json.hpp"
2023-10-16 19:46:29 +00:00
# include "llama.h"
# include "grammar-parser.h"
# include "backend.pb.h"
# include "backend.grpc.pb.h"
2024-02-01 18:21:52 +00:00
# include "utils.hpp"
2023-10-16 19:46:29 +00:00
// include std::regex
2023-11-11 12:14:59 +00:00
# include <cstddef>
# include <thread>
# include <mutex>
# include <chrono>
2023-10-16 19:46:29 +00:00
# include <regex>
2024-01-01 13:39:31 +00:00
# include <condition_variable>
2023-10-16 19:46:29 +00:00
# include <grpcpp/ext/proto_server_reflection_plugin.h>
# include <grpcpp/grpcpp.h>
# include <grpcpp/health_check_service_interface.h>
2024-02-01 18:21:52 +00:00
# include <atomic>
2024-02-21 16:23:38 +00:00
# include <signal.h>
2023-10-16 19:46:29 +00:00
using grpc : : Server ;
using grpc : : ServerBuilder ;
using grpc : : ServerContext ;
using grpc : : Status ;
using backend : : HealthMessage ;
2023-11-11 12:14:59 +00:00
///// LLAMA.CPP server code below
2024-01-01 13:39:31 +00:00
2023-11-11 12:14:59 +00:00
using json = nlohmann : : json ;
2023-12-15 07:26:48 +00:00
struct server_params
{
std : : string hostname = " 127.0.0.1 " ;
2024-02-01 18:21:52 +00:00
std : : vector < std : : string > api_keys ;
2023-12-15 07:26:48 +00:00
std : : string public_path = " examples/server/public " ;
2024-02-21 16:23:38 +00:00
std : : string chat_template = " " ;
2023-12-15 07:26:48 +00:00
int32_t port = 8080 ;
int32_t read_timeout = 600 ;
int32_t write_timeout = 600 ;
2024-02-21 16:23:38 +00:00
bool slots_endpoint = true ;
2024-02-26 12:18:44 +00:00
bool metrics_endpoint = false ;
2023-12-15 07:26:48 +00:00
} ;
2024-02-01 18:21:52 +00:00
bool server_verbose = false ;
2024-02-26 12:18:44 +00:00
bool server_log_json = true ;
2023-10-16 19:46:29 +00:00
static size_t common_part ( const std : : vector < llama_token > & a , const std : : vector < llama_token > & b )
{
size_t i ;
for ( i = 0 ; i < a . size ( ) & & i < b . size ( ) & & a [ i ] = = b [ i ] ; i + + )
{
}
return i ;
}
enum stop_type
{
STOP_FULL ,
STOP_PARTIAL ,
} ;
static bool ends_with ( const std : : string & str , const std : : string & suffix )
{
return str . size ( ) > = suffix . size ( ) & &
0 = = str . compare ( str . size ( ) - suffix . size ( ) , suffix . size ( ) , suffix ) ;
}
static size_t find_partial_stop_string ( const std : : string & stop ,
const std : : string & text )
{
if ( ! text . empty ( ) & & ! stop . empty ( ) )
{
const char text_last_char = text . back ( ) ;
for ( int64_t char_index = stop . size ( ) - 1 ; char_index > = 0 ; char_index - - )
{
if ( stop [ char_index ] = = text_last_char )
{
const std : : string current_partial = stop . substr ( 0 , char_index + 1 ) ;
if ( ends_with ( text , current_partial ) )
{
return text . size ( ) - char_index - 1 ;
}
}
}
}
return std : : string : : npos ;
}
2023-11-11 12:14:59 +00:00
// TODO: reuse llama_detokenize
2023-10-16 19:46:29 +00:00
template < class Iter >
static std : : string tokens_to_str ( llama_context * ctx , Iter begin , Iter end )
{
std : : string ret ;
for ( ; begin ! = end ; + + begin )
{
ret + = llama_token_to_piece ( ctx , * begin ) ;
}
return ret ;
}
// format incomplete utf-8 multibyte character for output
static std : : string tokens_to_output_formatted_string ( const llama_context * ctx , const llama_token token )
{
std : : string out = token = = - 1 ? " " : llama_token_to_piece ( ctx , token ) ;
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if ( out . size ( ) = = 1 & & ( out [ 0 ] & 0x80 ) = = 0x80 )
{
std : : stringstream ss ;
ss < < std : : hex < < ( out [ 0 ] & 0xff ) ;
std : : string res ( ss . str ( ) ) ;
out = " byte: \\ x " + res ;
}
return out ;
}
2023-11-11 12:14:59 +00:00
// convert a vector of completion_token_output to json
static json probs_vector_to_json ( const llama_context * ctx , const std : : vector < completion_token_output > & probs )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
json out = json : : array ( ) ;
for ( const auto & prob : probs )
{
json probs_for_token = json : : array ( ) ;
for ( const auto & p : prob . probs )
{
std : : string tok_str = tokens_to_output_formatted_string ( ctx , p . tok ) ;
probs_for_token . push_back ( json
{
{ " tok_str " , tok_str } ,
{ " prob " , p . prob } ,
} ) ;
}
std : : string tok_str = tokens_to_output_formatted_string ( ctx , prob . tok ) ;
out . push_back ( json {
{ " content " , tok_str } ,
{ " probs " , probs_for_token } ,
} ) ;
}
return out ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
struct llama_client_slot
{
int id ;
int task_id = - 1 ;
2023-10-21 08:21:20 +00:00
2023-11-11 12:14:59 +00:00
struct slot_params params ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
slot_state state = IDLE ;
slot_command command = NONE ;
// used to determine the slot that has been used the longest
int64_t t_last_used = - 1 ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
// generation props
int32_t n_ctx = 0 ; // context size per slot
int32_t n_past = 0 ;
int32_t n_decoded = 0 ;
int32_t n_remaining = - 1 ;
int32_t i_batch = - 1 ;
2024-02-21 16:23:38 +00:00
int32_t n_predict = - 1 ;
2023-11-11 12:14:59 +00:00
int32_t num_prompt_tokens = 0 ;
int32_t num_prompt_tokens_processed = 0 ;
json prompt ;
std : : string generated_text ;
llama_token sampled ;
std : : vector < llama_token > cache_tokens ;
std : : vector < completion_token_output > generated_token_probs ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
bool infill = false ;
bool embedding = false ;
bool has_next_token = true ;
2023-10-16 19:46:29 +00:00
bool truncated = false ;
bool stopped_eos = false ;
bool stopped_word = false ;
bool stopped_limit = false ;
2023-11-11 12:14:59 +00:00
2023-12-15 07:26:48 +00:00
bool oaicompat = false ;
std : : string oaicompat_model ;
2023-10-16 19:46:29 +00:00
std : : string stopping_word ;
2023-11-11 12:14:59 +00:00
// sampling
struct llama_sampling_params sparams ;
llama_sampling_context * ctx_sampling = nullptr ;
2024-02-01 18:21:52 +00:00
int32_t ga_i = 0 ; // group-attention state
int32_t ga_n = 1 ; // group-attention factor
int32_t ga_w = 512 ; // group-attention width
int32_t n_past_se = 0 ; // self-extend
2023-11-11 12:14:59 +00:00
// multimodal
std : : vector < slot_image > images ;
// stats
size_t sent_count = 0 ;
size_t sent_token_probs_index = 0 ;
int64_t t_start_process_prompt ;
int64_t t_start_genereration ;
double t_prompt_processing ; // ms
double t_token_generation ; // ms
2023-12-15 07:26:48 +00:00
// multitasks
int multitask_id = - 1 ;
2023-11-11 12:14:59 +00:00
void reset ( ) {
num_prompt_tokens = 0 ;
generated_text = " " ;
truncated = false ;
stopped_eos = false ;
stopped_word = false ;
stopped_limit = false ;
stopping_word = " " ;
n_past = 0 ;
sent_count = 0 ;
sent_token_probs_index = 0 ;
infill = false ;
2024-02-01 18:21:52 +00:00
ga_i = 0 ;
n_past_se = 0 ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
generated_token_probs . clear ( ) ;
2024-01-01 13:39:31 +00:00
for ( slot_image & img : images )
2023-11-11 12:14:59 +00:00
{
free ( img . image_embedding ) ;
2024-01-01 13:39:31 +00:00
if ( img . img_data ) {
clip_image_u8_free ( img . img_data ) ;
}
2023-11-11 12:14:59 +00:00
img . prefix_prompt = " " ;
}
images . clear ( ) ;
}
bool has_budget ( gpt_params & global_params ) {
2024-01-21 08:56:14 +00:00
if ( params . n_predict = = - 1 & & global_params . n_predict = = - 1 )
{
return true ; // limitless
}
2024-02-01 18:21:52 +00:00
2023-11-11 12:14:59 +00:00
n_remaining = - 1 ;
2024-02-01 18:21:52 +00:00
2024-01-21 08:56:14 +00:00
if ( params . n_predict ! = - 1 )
2023-11-11 12:14:59 +00:00
{
n_remaining = params . n_predict - n_decoded ;
}
else if ( global_params . n_predict ! = - 1 )
{
n_remaining = global_params . n_predict - n_decoded ;
}
2024-02-01 18:21:52 +00:00
2024-01-21 08:56:14 +00:00
return n_remaining > 0 ; // no budget
2023-11-11 12:14:59 +00:00
}
bool available ( ) const {
return state = = IDLE & & command = = NONE ;
}
bool is_processing ( ) const {
return ( state = = IDLE & & command = = LOAD_PROMPT ) | | state = = PROCESSING ;
}
void add_token_string ( const completion_token_output & token ) {
if ( command = = RELEASE )
{
return ;
}
cache_tokens . push_back ( token . tok ) ;
generated_token_probs . push_back ( token ) ;
}
void release ( ) {
2024-02-01 18:21:52 +00:00
if ( state = = PROCESSING )
2023-11-11 12:14:59 +00:00
{
t_token_generation = ( ggml_time_us ( ) - t_start_genereration ) / 1e3 ;
command = RELEASE ;
}
}
json get_formated_timings ( ) {
return json
{
{ " prompt_n " , num_prompt_tokens_processed } ,
{ " prompt_ms " , t_prompt_processing } ,
{ " prompt_per_token_ms " , t_prompt_processing / num_prompt_tokens_processed } ,
{ " prompt_per_second " , 1e3 / t_prompt_processing * num_prompt_tokens_processed } ,
{ " predicted_n " , n_decoded } ,
{ " predicted_ms " , t_token_generation } ,
{ " predicted_per_token_ms " , t_token_generation / n_decoded } ,
{ " predicted_per_second " , 1e3 / t_token_generation * n_decoded } ,
} ;
}
2023-12-15 07:26:48 +00:00
void print_timings ( ) const {
2024-02-26 12:18:44 +00:00
char buffer [ 512 ] ;
double t_token = t_prompt_processing / num_prompt_tokens_processed ;
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed ;
sprintf ( buffer , " prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second) " ,
t_prompt_processing , num_prompt_tokens_processed ,
t_token , n_tokens_second ) ;
LOG_INFO ( buffer , {
{ " slot_id " , id } ,
{ " task_id " , task_id } ,
{ " t_prompt_processing " , t_prompt_processing } ,
{ " num_prompt_tokens_processed " , num_prompt_tokens_processed } ,
{ " t_token " , t_token } ,
{ " n_tokens_second " , n_tokens_second } ,
} ) ;
t_token = t_token_generation / n_decoded ;
n_tokens_second = 1e3 / t_token_generation * n_decoded ;
sprintf ( buffer , " generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second) " ,
t_token_generation , n_decoded ,
t_token , n_tokens_second ) ;
LOG_INFO ( buffer , {
{ " slot_id " , id } ,
{ " task_id " , task_id } ,
{ " t_token_generation " , t_token_generation } ,
{ " n_decoded " , n_decoded } ,
{ " t_token " , t_token } ,
{ " n_tokens_second " , n_tokens_second } ,
} ) ;
sprintf ( buffer , " total time = %10.2f ms " , t_prompt_processing + t_token_generation ) ;
LOG_INFO ( buffer , {
{ " slot_id " , id } ,
{ " task_id " , task_id } ,
{ " t_prompt_processing " , t_prompt_processing } ,
{ " t_token_generation " , t_token_generation } ,
{ " t_total " , t_prompt_processing + t_token_generation } ,
} ) ;
}
} ;
struct llama_metrics {
uint64_t n_prompt_tokens_processed_total = 0 ;
uint64_t n_tokens_predicted_total = 0 ;
uint64_t n_prompt_tokens_processed = 0 ;
uint64_t t_prompt_processing = 0 ;
uint64_t n_tokens_predicted = 0 ;
uint64_t t_tokens_generation = 0 ;
void on_prompt_eval ( const llama_client_slot & slot ) {
n_prompt_tokens_processed_total + = slot . num_prompt_tokens_processed ;
n_prompt_tokens_processed + = slot . num_prompt_tokens_processed ;
t_prompt_processing + = slot . t_prompt_processing ;
}
void on_prediction ( const llama_client_slot & slot ) {
n_tokens_predicted_total + = slot . n_decoded ;
n_tokens_predicted + = slot . n_decoded ;
t_tokens_generation + = slot . t_token_generation ;
}
void reset_bucket ( ) {
n_prompt_tokens_processed = 0 ;
t_prompt_processing = 0 ;
n_tokens_predicted = 0 ;
t_tokens_generation = 0 ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
} ;
struct llama_server_context
{
llama_model * model = nullptr ;
llama_context * ctx = nullptr ;
clip_ctx * clp_ctx = nullptr ;
gpt_params params ;
llama_batch batch ;
bool multimodal = false ;
bool clean_kv_cache = true ;
bool all_slots_are_idle = false ;
2023-12-15 07:26:48 +00:00
bool add_bos_token = true ;
2023-11-11 12:14:59 +00:00
int32_t n_ctx ; // total context for all clients / slots
// system prompt
bool system_need_update = false ;
std : : string system_prompt ;
std : : vector < llama_token > system_tokens ;
std : : string name_user ; // this should be the antiprompt
std : : string name_assistant ;
// slots / clients
std : : vector < llama_client_slot > slots ;
2024-02-21 10:35:44 +00:00
json default_generation_settings_for_props ;
2023-11-11 12:14:59 +00:00
2024-02-01 18:21:52 +00:00
llama_server_queue queue_tasks ;
llama_server_response queue_results ;
2023-10-16 19:46:29 +00:00
2024-02-26 12:18:44 +00:00
llama_metrics metrics ;
2023-10-16 19:46:29 +00:00
~ llama_server_context ( )
{
if ( ctx )
{
llama_free ( ctx ) ;
ctx = nullptr ;
}
if ( model )
{
llama_free_model ( model ) ;
model = nullptr ;
}
}
2023-11-11 12:14:59 +00:00
bool load_model ( const gpt_params & params_ )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
params = params_ ;
if ( ! params . mmproj . empty ( ) ) {
multimodal = true ;
2024-02-26 12:18:44 +00:00
LOG_INFO ( " Multi Modal Mode Enabled " , { } ) ;
2023-11-11 12:14:59 +00:00
clp_ctx = clip_model_load ( params . mmproj . c_str ( ) , /*verbosity=*/ 1 ) ;
if ( clp_ctx = = nullptr ) {
LOG_ERROR ( " unable to load clip model " , { { " model " , params . mmproj } } ) ;
return false ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
if ( params . n_ctx < 2048 ) { // request larger context for the image embedding
params . n_ctx = 2048 ;
}
2023-10-16 19:46:29 +00:00
}
std : : tie ( model , ctx ) = llama_init_from_gpt_params ( params ) ;
if ( model = = nullptr )
{
2023-11-11 12:14:59 +00:00
LOG_ERROR ( " unable to load model " , { { " model " , params . model } } ) ;
2023-10-16 19:46:29 +00:00
return false ;
}
2023-11-11 12:14:59 +00:00
if ( multimodal ) {
const int n_embd_clip = clip_n_mmproj_embd ( clp_ctx ) ;
const int n_embd_llm = llama_n_embd ( model ) ;
if ( n_embd_clip ! = n_embd_llm ) {
LOG_TEE ( " %s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file. \n " , __func__ , n_embd_clip , n_embd_llm ) ;
llama_free ( ctx ) ;
llama_free_model ( model ) ;
return false ;
}
}
2023-10-16 19:46:29 +00:00
n_ctx = llama_n_ctx ( ctx ) ;
2023-11-11 12:14:59 +00:00
2023-12-15 07:26:48 +00:00
add_bos_token = llama_should_add_bos_token ( model ) ;
2023-10-16 19:46:29 +00:00
return true ;
}
2023-11-11 12:14:59 +00:00
2024-02-26 12:18:44 +00:00
void validate_model_chat_template ( server_params & sparams ) {
llama_chat_message chat [ ] = { { " user " , " test " } } ;
std : : vector < char > buf ( 1 ) ;
int res = llama_chat_apply_template ( model , nullptr , chat , 1 , true , buf . data ( ) , buf . size ( ) ) ;
if ( res < 0 ) {
LOG_ERROR ( " The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses " , { } ) ;
sparams . chat_template = " <|im_start|> " ; // llama_chat_apply_template only checks if <|im_start|> exist in the template
}
}
2023-11-11 12:14:59 +00:00
void initialize ( ) {
// create slots
all_slots_are_idle = true ;
const int32_t n_ctx_slot = n_ctx / params . n_parallel ;
2024-02-26 12:18:44 +00:00
LOG_INFO ( " initializing slots " , { { " n_slots " , params . n_parallel } } ) ;
2023-11-11 12:14:59 +00:00
for ( int i = 0 ; i < params . n_parallel ; i + + )
{
llama_client_slot slot ;
slot . id = i ;
slot . n_ctx = n_ctx_slot ;
2024-02-21 16:23:38 +00:00
slot . n_predict = params . n_predict ;
2023-11-11 12:14:59 +00:00
2024-02-26 12:18:44 +00:00
LOG_INFO ( " new slot " , {
{ " slot_id " , slot . id } ,
{ " n_ctx_slot " , slot . n_ctx }
} ) ;
2024-02-01 18:21:52 +00:00
const int ga_n = params . grp_attn_n ;
const int ga_w = params . grp_attn_w ;
if ( ga_n ! = 1 ) {
GGML_ASSERT ( ga_n > 0 & & " ga_n must be positive " ) ; // NOLINT
GGML_ASSERT ( ga_w % ga_n = = 0 & & " ga_w must be a multiple of ga_n " ) ; // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
2024-02-26 12:18:44 +00:00
LOG_INFO ( " slot self-extend " , {
{ " slot_id " , slot . id } ,
{ " ga_n " , ga_n } ,
{ " ga_w " , ga_w }
} ) ;
2024-02-01 18:21:52 +00:00
}
slot . ga_i = 0 ;
slot . ga_n = ga_n ;
slot . ga_w = ga_w ;
slot . reset ( ) ;
2023-11-11 12:14:59 +00:00
slots . push_back ( slot ) ;
}
2024-02-21 10:35:44 +00:00
default_generation_settings_for_props = get_formated_generation ( slots . front ( ) ) ;
default_generation_settings_for_props [ " seed " ] = - 1 ;
2023-11-11 12:14:59 +00:00
batch = llama_batch_init ( n_ctx , 0 , params . n_parallel ) ;
2023-10-16 19:46:29 +00:00
}
2023-10-21 08:21:20 +00:00
2023-11-11 12:14:59 +00:00
std : : vector < llama_token > tokenize ( const json & json_prompt , bool add_bos ) const
{
2023-12-15 07:26:48 +00:00
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true ;
2023-11-11 12:14:59 +00:00
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std : : vector < llama_token > prompt_tokens ;
if ( json_prompt . is_array ( ) )
{
2023-10-21 08:21:20 +00:00
bool first = true ;
2023-11-11 12:14:59 +00:00
for ( const auto & p : json_prompt )
{
if ( p . is_string ( ) )
2023-10-21 08:21:20 +00:00
{
2023-11-11 12:14:59 +00:00
auto s = p . template get < std : : string > ( ) ;
2023-10-21 08:21:20 +00:00
std : : vector < llama_token > p ;
if ( first )
{
2023-12-15 07:26:48 +00:00
p = : : llama_tokenize ( ctx , s , add_bos , TMP_FORCE_SPECIAL ) ;
2023-10-21 08:21:20 +00:00
first = false ;
}
else
{
2023-12-15 07:26:48 +00:00
p = : : llama_tokenize ( ctx , s , false , TMP_FORCE_SPECIAL ) ;
2023-10-21 08:21:20 +00:00
}
prompt_tokens . insert ( prompt_tokens . end ( ) , p . begin ( ) , p . end ( ) ) ;
}
else
{
if ( first )
{
first = false ;
}
2023-11-11 12:14:59 +00:00
prompt_tokens . push_back ( p . template get < llama_token > ( ) ) ;
2023-10-16 19:46:29 +00:00
}
}
}
2023-11-11 12:14:59 +00:00
else
{
auto s = json_prompt . template get < std : : string > ( ) ;
2023-12-15 07:26:48 +00:00
prompt_tokens = : : llama_tokenize ( ctx , s , add_bos , TMP_FORCE_SPECIAL ) ;
2023-10-16 19:46:29 +00:00
}
2023-10-21 08:21:20 +00:00
2023-11-11 12:14:59 +00:00
return prompt_tokens ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
llama_client_slot * get_slot ( int id ) {
int64_t t_last = ggml_time_us ( ) ;
llama_client_slot * last_used = nullptr ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
for ( llama_client_slot & slot : slots )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
if ( slot . id = = id & & slot . available ( ) )
{
return & slot ;
}
if ( slot . available ( ) & & slot . t_last_used < t_last )
{
last_used = & slot ;
t_last = slot . t_last_used ;
}
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
return last_used ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
bool launch_slot_with_data ( llama_client_slot * & slot , json data ) {
slot_params default_params ;
llama_sampling_params default_sparams ;
2024-02-21 16:23:38 +00:00
2024-02-21 10:35:44 +00:00
slot - > params . stream = json_value ( data , " stream " , false ) ;
slot - > params . cache_prompt = json_value ( data , " cache_prompt " , false ) ;
slot - > params . n_predict = json_value ( data , " n_predict " , default_params . n_predict ) ;
slot - > sparams . top_k = json_value ( data , " top_k " , default_sparams . top_k ) ;
slot - > sparams . top_p = json_value ( data , " top_p " , default_sparams . top_p ) ;
slot - > sparams . min_p = json_value ( data , " min_p " , default_sparams . min_p ) ;
slot - > sparams . tfs_z = json_value ( data , " tfs_z " , default_sparams . tfs_z ) ;
slot - > sparams . typical_p = json_value ( data , " typical_p " , default_sparams . typical_p ) ;
slot - > sparams . temp = json_value ( data , " temperature " , default_sparams . temp ) ;
slot - > sparams . dynatemp_range = json_value ( data , " dynatemp_range " , default_sparams . dynatemp_range ) ;
slot - > sparams . dynatemp_exponent = json_value ( data , " dynatemp_exponent " , default_sparams . dynatemp_exponent ) ;
slot - > sparams . penalty_last_n = json_value ( data , " repeat_last_n " , default_sparams . penalty_last_n ) ;
slot - > sparams . penalty_repeat = json_value ( data , " repeat_penalty " , default_sparams . penalty_repeat ) ;
slot - > sparams . penalty_freq = json_value ( data , " frequency_penalty " , default_sparams . penalty_freq ) ;
slot - > sparams . penalty_present = json_value ( data , " presence_penalty " , default_sparams . penalty_present ) ;
slot - > sparams . mirostat = json_value ( data , " mirostat " , default_sparams . mirostat ) ;
slot - > sparams . mirostat_tau = json_value ( data , " mirostat_tau " , default_sparams . mirostat_tau ) ;
slot - > sparams . mirostat_eta = json_value ( data , " mirostat_eta " , default_sparams . mirostat_eta ) ;
slot - > sparams . penalize_nl = json_value ( data , " penalize_nl " , default_sparams . penalize_nl ) ;
slot - > params . n_keep = json_value ( data , " n_keep " , slot - > params . n_keep ) ;
slot - > params . seed = json_value ( data , " seed " , default_params . seed ) ;
slot - > sparams . grammar = json_value ( data , " grammar " , default_sparams . grammar ) ;
slot - > sparams . n_probs = json_value ( data , " n_probs " , default_sparams . n_probs ) ;
2024-02-21 16:23:38 +00:00
slot - > sparams . min_keep = json_value ( data , " min_keep " , default_sparams . min_keep ) ;
if ( slot - > n_predict > 0 & & slot - > params . n_predict > slot - > n_predict ) {
// Might be better to reject the request with a 400 ?
LOG_WARNING ( " Max tokens to predict exceeds server configuration " , {
{ " params.n_predict " , slot - > params . n_predict } ,
{ " slot.n_predict " , slot - > n_predict } ,
} ) ;
slot - > params . n_predict = slot - > n_predict ;
}
2023-11-11 12:14:59 +00:00
// infill
if ( data . count ( " input_prefix " ) ! = 0 )
{
slot - > params . input_prefix = data [ " input_prefix " ] ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
else
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
slot - > params . input_prefix = " " ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
if ( data . count ( " input_suffix " ) ! = 0 )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
slot - > params . input_suffix = data [ " input_suffix " ] ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
else
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
slot - > params . input_suffix = " " ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
if ( data . count ( " prompt " ) ! = 0 )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
slot - > prompt = data [ " prompt " ] ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
else
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
slot - > prompt = " " ;
2023-10-16 19:46:29 +00:00
}
2024-01-01 13:39:31 +00:00
slot - > sparams . penalty_prompt_tokens . clear ( ) ;
slot - > sparams . use_penalty_prompt_tokens = false ;
const auto & penalty_prompt = data . find ( " penalty_prompt " ) ;
if ( penalty_prompt ! = data . end ( ) )
{
if ( penalty_prompt - > is_string ( ) )
{
const auto penalty_prompt_string = penalty_prompt - > get < std : : string > ( ) ;
auto penalty_tokens = llama_tokenize ( model , penalty_prompt_string , false ) ;
slot - > sparams . penalty_prompt_tokens . swap ( penalty_tokens ) ;
if ( slot - > params . n_predict > 0 )
{
slot - > sparams . penalty_prompt_tokens . reserve ( slot - > sparams . penalty_prompt_tokens . size ( ) + slot - > params . n_predict ) ;
}
slot - > sparams . use_penalty_prompt_tokens = true ;
}
else if ( penalty_prompt - > is_array ( ) )
{
const auto n_tokens = penalty_prompt - > size ( ) ;
slot - > sparams . penalty_prompt_tokens . reserve ( n_tokens + std : : max ( 0 , slot - > params . n_predict ) ) ;
const int n_vocab = llama_n_vocab ( model ) ;
for ( const auto & penalty_token : * penalty_prompt )
{
if ( penalty_token . is_number_integer ( ) )
{
const auto tok = penalty_token . get < llama_token > ( ) ;
if ( tok > = 0 & & tok < n_vocab )
{
slot - > sparams . penalty_prompt_tokens . push_back ( tok ) ;
}
}
}
slot - > sparams . use_penalty_prompt_tokens = true ;
}
}
2023-11-11 12:14:59 +00:00
slot - > sparams . logit_bias . clear ( ) ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
if ( json_value ( data , " ignore_eos " , false ) )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
slot - > sparams . logit_bias [ llama_token_eos ( model ) ] = - INFINITY ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
const auto & logit_bias = data . find ( " logit_bias " ) ;
if ( logit_bias ! = data . end ( ) & & logit_bias - > is_array ( ) )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
const int n_vocab = llama_n_vocab ( model ) ;
for ( const auto & el : * logit_bias )
2023-10-16 19:46:29 +00:00
{
2024-02-21 10:35:44 +00:00
if ( el . is_array ( ) & & el . size ( ) = = 2 )
2023-11-11 12:14:59 +00:00
{
2024-02-21 10:35:44 +00:00
float bias ;
if ( el [ 1 ] . is_number ( ) )
{
bias = el [ 1 ] . get < float > ( ) ;
}
else if ( el [ 1 ] . is_boolean ( ) & & ! el [ 1 ] . get < bool > ( ) )
{
bias = - INFINITY ;
}
else
2023-11-11 12:14:59 +00:00
{
2024-02-21 10:35:44 +00:00
continue ;
}
if ( el [ 0 ] . is_number_integer ( ) )
{
llama_token tok = el [ 0 ] . get < llama_token > ( ) ;
if ( tok > = 0 & & tok < n_vocab )
2023-11-11 12:14:59 +00:00
{
2024-02-21 10:35:44 +00:00
slot - > sparams . logit_bias [ tok ] = bias ;
2023-11-11 12:14:59 +00:00
}
2024-02-21 10:35:44 +00:00
}
else if ( el [ 0 ] . is_string ( ) )
{
auto toks = llama_tokenize ( model , el [ 0 ] . get < std : : string > ( ) , false ) ;
for ( auto tok : toks )
2023-11-11 12:14:59 +00:00
{
2024-02-21 10:35:44 +00:00
slot - > sparams . logit_bias [ tok ] = bias ;
2023-11-11 12:14:59 +00:00
}
}
}
2023-10-16 19:46:29 +00:00
}
}
2023-11-11 12:14:59 +00:00
slot - > params . antiprompt . clear ( ) ;
const auto & stop = data . find ( " stop " ) ;
if ( stop ! = data . end ( ) & & stop - > is_array ( ) )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
for ( const auto & word : * stop )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
if ( ! word . empty ( ) )
{
slot - > params . antiprompt . push_back ( word ) ;
}
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
}
2023-10-16 19:46:29 +00:00
2024-02-21 16:23:38 +00:00
const auto & samplers_sequence = data . find ( " samplers " ) ;
if ( samplers_sequence ! = data . end ( ) & & samplers_sequence - > is_array ( ) )
{
std : : vector < std : : string > sampler_names ;
for ( const auto & sampler_name : * samplers_sequence )
{
if ( sampler_name . is_string ( ) )
{
sampler_names . emplace_back ( sampler_name ) ;
}
}
2024-05-22 23:02:11 +00:00
slot - > sparams . samplers_sequence = llama_sampling_types_from_names ( sampler_names , false ) ;
2024-02-21 16:23:38 +00:00
}
else
{
slot - > sparams . samplers_sequence = default_sparams . samplers_sequence ;
}
2023-11-11 12:14:59 +00:00
if ( multimodal )
{
const auto & images_data = data . find ( " image_data " ) ;
if ( images_data ! = data . end ( ) & & images_data - > is_array ( ) )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
for ( const auto & img : * images_data )
{
2024-01-01 13:39:31 +00:00
const std : : vector < uint8_t > image_buffer = base64_decode ( img [ " data " ] . get < std : : string > ( ) ) ;
2023-11-11 12:14:59 +00:00
slot_image img_sl ;
img_sl . id = img . count ( " id " ) ! = 0 ? img [ " id " ] . get < int > ( ) : slot - > images . size ( ) ;
2024-01-01 13:39:31 +00:00
img_sl . img_data = clip_image_u8_init ( ) ;
if ( ! clip_image_load_from_bytes ( image_buffer . data ( ) , image_buffer . size ( ) , img_sl . img_data ) )
{
2024-02-26 12:18:44 +00:00
LOG_ERROR ( " failed to load image " , {
{ " slot_id " , slot - > id } ,
{ " img_sl_id " , img_sl . id }
} ) ;
2023-11-11 12:14:59 +00:00
return false ;
}
2024-02-26 12:18:44 +00:00
LOG_VERBOSE ( " image loaded " , {
{ " slot_id " , slot - > id } ,
{ " img_sl_id " , img_sl . id }
} ) ;
2023-11-11 12:14:59 +00:00
img_sl . request_encode_image = true ;
slot - > images . push_back ( img_sl ) ;
}
// process prompt
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
if ( slot - > images . size ( ) > 0 & & ! slot - > prompt . is_array ( ) )
{
std : : string prompt = slot - > prompt . get < std : : string > ( ) ;
size_t pos = 0 , begin_prefix = 0 ;
std : : string pattern = " [img- " ;
while ( ( pos = prompt . find ( pattern , pos ) ) ! = std : : string : : npos ) {
size_t end_prefix = pos ;
pos + = pattern . length ( ) ;
2024-02-01 18:21:52 +00:00
size_t end_pos = prompt . find ( ' ] ' , pos ) ;
2023-11-11 12:14:59 +00:00
if ( end_pos ! = std : : string : : npos )
{
std : : string image_id = prompt . substr ( pos , end_pos - pos ) ;
try
{
int img_id = std : : stoi ( image_id ) ;
bool found = false ;
for ( slot_image & img : slot - > images )
{
if ( img . id = = img_id ) {
found = true ;
img . prefix_prompt = prompt . substr ( begin_prefix , end_prefix - begin_prefix ) ;
begin_prefix = end_pos + 1 ;
break ;
}
}
if ( ! found ) {
LOG_TEE ( " ERROR: Image with id: %i, not found. \n " , img_id ) ;
slot - > images . clear ( ) ;
return false ;
}
} catch ( const std : : invalid_argument & e ) {
LOG_TEE ( " Invalid image number id in prompt \n " ) ;
slot - > images . clear ( ) ;
return false ;
}
}
}
slot - > prompt = " " ;
slot - > params . input_suffix = prompt . substr ( begin_prefix ) ;
slot - > params . cache_prompt = false ; // multimodal doesn't support cache prompt
}
2023-10-16 19:46:29 +00:00
}
}
2023-11-11 12:14:59 +00:00
if ( slot - > ctx_sampling ! = nullptr )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
llama_sampling_free ( slot - > ctx_sampling ) ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
slot - > ctx_sampling = llama_sampling_init ( slot - > sparams ) ;
2024-01-01 13:39:31 +00:00
llama_set_rng_seed ( ctx , slot - > params . seed ) ;
2023-11-11 12:14:59 +00:00
slot - > command = LOAD_PROMPT ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
all_slots_are_idle = false ;
2023-10-16 19:46:29 +00:00
2024-02-26 12:18:44 +00:00
LOG_INFO ( " slot is processing task " , {
{ " slot_id " , slot - > id } ,
{ " task_id " , slot - > task_id } ,
} ) ;
2023-10-16 19:46:29 +00:00
2024-06-26 12:58:50 +00:00
LOG_TEE ( " sampling: \n %s \n " , llama_sampling_print ( slot - > sparams ) . c_str ( ) ) ;
2023-11-11 12:14:59 +00:00
return true ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
void kv_cache_clear ( ) {
// clear the entire KV cache
llama_kv_cache_clear ( ctx ) ;
clean_kv_cache = false ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
void update_system_prompt ( ) {
2024-02-21 16:23:38 +00:00
kv_cache_clear ( ) ;
system_tokens . clear ( ) ;
2023-10-21 08:21:20 +00:00
2024-02-21 16:23:38 +00:00
if ( ! system_prompt . empty ( ) ) {
system_tokens = : : llama_tokenize ( ctx , system_prompt , add_bos_token ) ;
2023-11-11 12:14:59 +00:00
2024-02-21 16:23:38 +00:00
llama_batch_clear ( batch ) ;
2023-11-11 12:14:59 +00:00
2024-02-21 16:23:38 +00:00
for ( int i = 0 ; i < ( int ) system_tokens . size ( ) ; + + i )
{
llama_batch_add ( batch , system_tokens [ i ] , i , { 0 } , false ) ;
}
2023-10-16 19:46:29 +00:00
2024-02-26 12:18:44 +00:00
for ( int32_t i = 0 ; i < ( int32_t ) batch . n_tokens ; i + = params . n_batch )
2024-02-21 16:23:38 +00:00
{
2024-02-26 12:18:44 +00:00
const int32_t n_tokens = std : : min ( params . n_batch , ( int32_t ) ( batch . n_tokens - i ) ) ;
llama_batch batch_view = {
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
if ( llama_decode ( ctx , batch_view ) ! = 0 )
{
LOG_TEE ( " %s: llama_decode() failed \n " , __func__ ) ;
return ;
}
2024-02-21 16:23:38 +00:00
}
2023-10-16 19:46:29 +00:00
2024-02-21 16:23:38 +00:00
// assign the system KV cache to all parallel sequences
for ( int32_t i = 1 ; i < params . n_parallel ; + + i )
{
llama_kv_cache_seq_cp ( ctx , 0 , i , 0 , system_tokens . size ( ) ) ;
}
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
LOG_TEE ( " system prompt updated \n " ) ;
system_need_update = false ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
void notify_system_prompt_changed ( ) {
// release all slots
for ( llama_client_slot & slot : slots )
{
slot . release ( ) ;
}
system_need_update = true ;
}
void process_system_prompt_data ( const json & sys_props ) {
system_prompt = sys_props . value ( " prompt " , " " ) ;
name_user = sys_props . value ( " anti_prompt " , " " ) ;
name_assistant = sys_props . value ( " assistant_name " , " " ) ;
2024-02-21 16:23:38 +00:00
notify_system_prompt_changed ( ) ;
2023-11-11 12:14:59 +00:00
}
static size_t find_stopping_strings ( const std : : string & text , const size_t last_token_size ,
const stop_type type , llama_client_slot & slot )
{
size_t stop_pos = std : : string : : npos ;
for ( const std : : string & word : slot . params . antiprompt )
2023-10-16 19:46:29 +00:00
{
size_t pos ;
if ( type = = STOP_FULL )
{
const size_t tmp = word . size ( ) + last_token_size ;
const size_t from_pos = text . size ( ) > tmp ? text . size ( ) - tmp : 0 ;
pos = text . find ( word , from_pos ) ;
}
else
{
pos = find_partial_stop_string ( word , text ) ;
}
if ( pos ! = std : : string : : npos & &
( stop_pos = = std : : string : : npos | | pos < stop_pos ) )
{
if ( type = = STOP_FULL )
{
2023-11-11 12:14:59 +00:00
slot . stopped_word = true ;
slot . stopping_word = word ;
slot . has_next_token = false ;
2023-10-16 19:46:29 +00:00
}
stop_pos = pos ;
}
}
2023-11-11 12:14:59 +00:00
2023-10-16 19:46:29 +00:00
return stop_pos ;
}
2023-11-11 12:14:59 +00:00
bool process_token ( completion_token_output & result , llama_client_slot & slot ) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std : : string token_str = llama_token_to_piece ( ctx , result . tok ) ;
slot . sampled = result . tok ;
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
// search stop word and delete it
slot . generated_text + = token_str ;
slot . has_next_token = true ;
2023-10-16 19:46:29 +00:00
2024-01-01 13:39:31 +00:00
if ( slot . ctx_sampling - > params . use_penalty_prompt_tokens & & result . tok ! = - 1 )
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot . ctx_sampling - > params . penalty_prompt_tokens . push_back ( result . tok ) ;
}
2023-12-15 07:26:48 +00:00
// check if there is incomplete UTF-8 character at the end
bool incomplete = false ;
for ( unsigned i = 1 ; i < 5 & & i < = slot . generated_text . size ( ) ; + + i )
2023-10-16 19:46:29 +00:00
{
2023-12-15 07:26:48 +00:00
unsigned char c = slot . generated_text [ slot . generated_text . size ( ) - i ] ;
if ( ( c & 0xC0 ) = = 0x80 )
{
// continuation byte: 10xxxxxx
continue ;
}
2023-10-16 19:46:29 +00:00
if ( ( c & 0xE0 ) = = 0xC0 )
{
2023-12-15 07:26:48 +00:00
// 2-byte character: 110xxxxx ...
incomplete = i < 2 ;
2023-10-16 19:46:29 +00:00
}
else if ( ( c & 0xF0 ) = = 0xE0 )
{
2023-12-15 07:26:48 +00:00
// 3-byte character: 1110xxxx ...
incomplete = i < 3 ;
2023-10-16 19:46:29 +00:00
}
else if ( ( c & 0xF8 ) = = 0xF0 )
{
2023-12-15 07:26:48 +00:00
// 4-byte character: 11110xxx ...
incomplete = i < 4 ;
2023-11-11 12:14:59 +00:00
}
2023-12-15 07:26:48 +00:00
// else 1-byte character or invalid byte
break ;
2023-11-11 12:14:59 +00:00
}
2023-12-15 07:26:48 +00:00
if ( ! incomplete )
2023-11-11 12:14:59 +00:00
{
size_t pos = std : : min ( slot . sent_count , slot . generated_text . size ( ) ) ;
const std : : string str_test = slot . generated_text . substr ( pos ) ;
bool is_stop_full = false ;
size_t stop_pos = find_stopping_strings ( str_test , token_str . size ( ) , STOP_FULL , slot ) ;
if ( stop_pos ! = std : : string : : npos )
{
is_stop_full = true ;
slot . generated_text . erase (
slot . generated_text . begin ( ) + pos + stop_pos ,
slot . generated_text . end ( ) ) ;
pos = std : : min ( slot . sent_count , slot . generated_text . size ( ) ) ;
2023-10-16 19:46:29 +00:00
}
else
{
2023-11-11 12:14:59 +00:00
is_stop_full = false ;
stop_pos = find_stopping_strings ( str_test , token_str . size ( ) , STOP_PARTIAL , slot ) ;
}
// check if there is any token to predict
if ( stop_pos = = std : : string : : npos | | ( ! slot . has_next_token & & ! is_stop_full & & stop_pos > 0 ) )
{
// no send the stop word in the response
result . text_to_send = slot . generated_text . substr ( pos , std : : string : : npos ) ;
slot . sent_count + = result . text_to_send . size ( ) ;
// add the token to slot queue and cache
}
slot . add_token_string ( result ) ;
if ( slot . params . stream )
{
send_partial_response ( slot , result ) ;
}
}
2023-12-15 07:26:48 +00:00
if ( incomplete )
2023-11-11 12:14:59 +00:00
{
slot . has_next_token = true ;
}
// check the limits
2024-01-21 08:56:14 +00:00
if ( slot . n_decoded > 0 & & slot . has_next_token & & ! slot . has_budget ( params ) )
2023-11-11 12:14:59 +00:00
{
slot . stopped_limit = true ;
slot . has_next_token = false ;
}
2024-03-18 17:59:24 +00:00
if ( result . tok = = llama_token_eos ( model ) )
2023-11-11 12:14:59 +00:00
{
slot . stopped_eos = true ;
slot . has_next_token = false ;
LOG_VERBOSE ( " eos token found " , { } ) ;
}
LOG_VERBOSE ( " next token " , {
{ " token " , result . tok } ,
{ " token_text " , tokens_to_output_formatted_string ( ctx , result . tok ) } ,
{ " has_next_token " , slot . has_next_token } ,
{ " n_remain " , slot . n_remaining } ,
{ " num_tokens_predicted " , slot . n_decoded } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
} ) ;
return slot . has_next_token ; // continue
}
bool process_images ( llama_client_slot & slot ) const
{
for ( slot_image & img : slot . images )
{
if ( ! img . request_encode_image )
{
continue ;
}
2024-02-21 10:35:44 +00:00
2024-02-21 16:23:38 +00:00
if ( ! llava_image_embed_make_with_clip_img ( clp_ctx , params . n_threads , img . img_data , & img . image_embedding , & img . image_tokens ) ) {
LOG_TEE ( " Error processing the given image " ) ;
2023-11-11 12:14:59 +00:00
return false ;
}
2024-02-21 10:35:44 +00:00
2023-11-11 12:14:59 +00:00
img . request_encode_image = false ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
return slot . images . size ( ) > 0 ;
}
2024-01-21 08:56:14 +00:00
void send_error ( task_server & task , const std : : string & error )
2023-11-11 12:14:59 +00:00
{
2024-01-21 08:56:14 +00:00
LOG_TEE ( " task %i - error: %s \n " , task . id , error . c_str ( ) ) ;
2023-11-11 12:14:59 +00:00
task_result res ;
2023-12-15 07:26:48 +00:00
res . id = task . id ;
res . multitask_id = task . multitask_id ;
res . stop = false ;
2023-11-11 12:14:59 +00:00
res . error = true ;
res . result_json = { { " content " , error } } ;
2024-02-01 18:21:52 +00:00
queue_results . send ( res ) ;
2023-12-15 07:26:48 +00:00
}
2023-11-11 12:14:59 +00:00
json get_formated_generation ( llama_client_slot & slot )
{
const auto eos_bias = slot . sparams . logit_bias . find ( llama_token_eos ( model ) ) ;
const bool ignore_eos = eos_bias ! = slot . sparams . logit_bias . end ( ) & &
eos_bias - > second < 0.0f & & std : : isinf ( eos_bias - > second ) ;
2024-02-21 16:23:38 +00:00
std : : vector < std : : string > samplers_sequence ;
for ( const auto & sampler_type : slot . sparams . samplers_sequence )
{
2024-05-22 23:02:11 +00:00
samplers_sequence . emplace_back ( llama_sampling_type_to_str ( sampler_type ) ) ;
2024-02-21 16:23:38 +00:00
}
2023-11-11 12:14:59 +00:00
return json {
{ " n_ctx " , slot . n_ctx } ,
2024-02-21 16:23:38 +00:00
{ " n_predict " , slot . n_predict } ,
2023-11-11 12:14:59 +00:00
{ " model " , params . model_alias } ,
{ " seed " , slot . params . seed } ,
2024-01-01 13:39:31 +00:00
{ " temperature " , slot . sparams . temp } ,
2024-02-21 10:35:44 +00:00
{ " dynatemp_range " , slot . sparams . dynatemp_range } ,
{ " dynatemp_exponent " , slot . sparams . dynatemp_exponent } ,
2023-11-11 12:14:59 +00:00
{ " top_k " , slot . sparams . top_k } ,
{ " top_p " , slot . sparams . top_p } ,
2023-12-15 07:26:48 +00:00
{ " min_p " , slot . sparams . min_p } ,
2023-11-11 12:14:59 +00:00
{ " tfs_z " , slot . sparams . tfs_z } ,
{ " typical_p " , slot . sparams . typical_p } ,
{ " repeat_last_n " , slot . sparams . penalty_last_n } ,
{ " repeat_penalty " , slot . sparams . penalty_repeat } ,
{ " presence_penalty " , slot . sparams . penalty_present } ,
{ " frequency_penalty " , slot . sparams . penalty_freq } ,
2024-01-01 13:39:31 +00:00
{ " penalty_prompt_tokens " , slot . sparams . penalty_prompt_tokens } ,
{ " use_penalty_prompt_tokens " , slot . sparams . use_penalty_prompt_tokens } ,
2023-11-11 12:14:59 +00:00
{ " mirostat " , slot . sparams . mirostat } ,
{ " mirostat_tau " , slot . sparams . mirostat_tau } ,
{ " mirostat_eta " , slot . sparams . mirostat_eta } ,
{ " penalize_nl " , slot . sparams . penalize_nl } ,
{ " stop " , slot . params . antiprompt } ,
{ " n_predict " , slot . params . n_predict } ,
{ " n_keep " , params . n_keep } ,
{ " ignore_eos " , ignore_eos } ,
{ " stream " , slot . params . stream } ,
{ " logit_bias " , slot . sparams . logit_bias } ,
{ " n_probs " , slot . sparams . n_probs } ,
2024-02-21 16:23:38 +00:00
{ " min_keep " , slot . sparams . min_keep } ,
2023-11-11 12:14:59 +00:00
{ " grammar " , slot . sparams . grammar } ,
2024-02-21 16:23:38 +00:00
{ " samplers " , samplers_sequence }
2023-11-11 12:14:59 +00:00
} ;
}
void send_partial_response ( llama_client_slot & slot , completion_token_output tkn )
{
task_result res ;
res . id = slot . task_id ;
2023-12-15 07:26:48 +00:00
res . multitask_id = slot . multitask_id ;
2023-11-11 12:14:59 +00:00
res . error = false ;
res . stop = false ;
res . result_json = json
{
{ " content " , tkn . text_to_send } ,
{ " stop " , false } ,
{ " slot_id " , slot . id } ,
{ " multimodal " , multimodal }
} ;
if ( slot . sparams . n_probs > 0 )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
std : : vector < completion_token_output > probs_output = { } ;
const std : : vector < llama_token > to_send_toks = llama_tokenize ( ctx , tkn . text_to_send , false ) ;
2024-01-21 08:56:14 +00:00
size_t probs_pos = std : : min ( slot . sent_token_probs_index , slot . generated_token_probs . size ( ) ) ;
2023-11-11 12:14:59 +00:00
size_t probs_stop_pos = std : : min ( slot . sent_token_probs_index + to_send_toks . size ( ) , slot . generated_token_probs . size ( ) ) ;
if ( probs_pos < probs_stop_pos )
{
probs_output = std : : vector < completion_token_output > ( slot . generated_token_probs . begin ( ) + probs_pos , slot . generated_token_probs . begin ( ) + probs_stop_pos ) ;
}
slot . sent_token_probs_index = probs_stop_pos ;
res . result_json [ " completion_probabilities " ] = probs_vector_to_json ( ctx , probs_output ) ;
2023-10-16 19:46:29 +00:00
}
2023-12-15 07:26:48 +00:00
if ( slot . oaicompat )
{
res . result_json [ " oaicompat_token_ctr " ] = slot . n_decoded ;
res . result_json [ " model " ] = slot . oaicompat_model ;
}
2024-02-01 18:21:52 +00:00
queue_results . send ( res ) ;
2023-11-11 12:14:59 +00:00
}
void send_final_response ( llama_client_slot & slot )
{
task_result res ;
res . id = slot . task_id ;
2023-12-15 07:26:48 +00:00
res . multitask_id = slot . multitask_id ;
2023-11-11 12:14:59 +00:00
res . error = false ;
res . stop = true ;
res . result_json = json
{
{ " content " , ! slot . params . stream ? slot . generated_text : " " } ,
{ " slot_id " , slot . id } ,
{ " stop " , true } ,
{ " model " , params . model_alias } ,
{ " tokens_predicted " , slot . n_decoded } ,
{ " tokens_evaluated " , slot . num_prompt_tokens } ,
{ " generation_settings " , get_formated_generation ( slot ) } ,
{ " prompt " , slot . prompt } ,
{ " truncated " , slot . truncated } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
{ " tokens_cached " , slot . n_past } ,
{ " timings " , slot . get_formated_timings ( ) }
} ;
if ( slot . sparams . n_probs > 0 )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
std : : vector < completion_token_output > probs = { } ;
if ( ! slot . params . stream & & slot . stopped_word )
{
const std : : vector < llama_token > stop_word_toks = llama_tokenize ( ctx , slot . stopping_word , false ) ;
probs = std : : vector < completion_token_output > ( slot . generated_token_probs . begin ( ) , slot . generated_token_probs . end ( ) - stop_word_toks . size ( ) ) ;
}
else
{
probs = std : : vector < completion_token_output > (
slot . generated_token_probs . begin ( ) ,
2024-01-21 08:56:14 +00:00
slot . generated_token_probs . end ( ) ) ;
2023-11-11 12:14:59 +00:00
}
res . result_json [ " completion_probabilities " ] = probs_vector_to_json ( ctx , probs ) ;
2023-10-16 19:46:29 +00:00
}
2023-12-15 07:26:48 +00:00
if ( slot . oaicompat )
{
res . result_json [ " oaicompat_token_ctr " ] = slot . n_decoded ;
res . result_json [ " model " ] = slot . oaicompat_model ;
}
2024-02-01 18:21:52 +00:00
queue_results . send ( res ) ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
void send_embedding ( llama_client_slot & slot )
2023-10-16 19:46:29 +00:00
{
2023-11-11 12:14:59 +00:00
task_result res ;
res . id = slot . task_id ;
2023-12-15 07:26:48 +00:00
res . multitask_id = slot . multitask_id ;
2023-11-11 12:14:59 +00:00
res . error = false ;
res . stop = true ;
const int n_embd = llama_n_embd ( model ) ;
2023-10-16 19:46:29 +00:00
if ( ! params . embedding )
{
2023-11-11 12:14:59 +00:00
LOG_WARNING ( " embedding disabled " , {
{ " params.embedding " , params . embedding } ,
} ) ;
res . result_json = json
{
{ " embedding " , std : : vector < float > ( n_embd , 0.0f ) } ,
} ;
}
else
{
const float * data = llama_get_embeddings ( ctx ) ;
std : : vector < float > embedding ( data , data + n_embd ) ;
res . result_json = json
{
{ " embedding " , embedding } ,
} ;
}
2024-02-01 18:21:52 +00:00
queue_results . send ( res ) ;
2023-11-11 12:14:59 +00:00
}
2024-02-01 18:21:52 +00:00
void request_completion ( int task_id , json data , bool infill , bool embedding , int multitask_id )
2023-11-11 12:14:59 +00:00
{
task_server task ;
2024-02-01 18:21:52 +00:00
task . id = task_id ;
2023-12-15 07:26:48 +00:00
task . target_id = 0 ;
task . data = std : : move ( data ) ;
2023-11-11 12:14:59 +00:00
task . infill_mode = infill ;
task . embedding_mode = embedding ;
2024-01-21 08:56:14 +00:00
task . type = TASK_TYPE_COMPLETION ;
2023-12-15 07:26:48 +00:00
task . multitask_id = multitask_id ;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
// otherwise, it's a single-prompt task, we actually queue it
2024-02-21 10:35:44 +00:00
// if there's numbers in the prompt array it will be treated as an array of tokens
if ( task . data . count ( " prompt " ) ! = 0 & & task . data . at ( " prompt " ) . size ( ) > 1 ) {
bool numbers = false ;
for ( const auto & e : task . data . at ( " prompt " ) ) {
if ( e . is_number ( ) ) {
numbers = true ;
break ;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if ( numbers ) {
queue_tasks . post ( task ) ;
} else {
split_multiprompt_task ( task_id , task ) ;
}
} else {
queue_tasks . post ( task ) ;
}
2023-11-11 12:14:59 +00:00
}
// for multiple images processing
bool ingest_images ( llama_client_slot & slot , int n_batch )
{
int image_idx = 0 ;
while ( image_idx < ( int ) slot . images . size ( ) )
{
slot_image & img = slot . images [ image_idx ] ;
// process prefix prompt
for ( int32_t i = 0 ; i < ( int32_t ) batch . n_tokens ; i + = n_batch )
{
const int32_t n_tokens = std : : min ( n_batch , ( int32_t ) ( batch . n_tokens - i ) ) ;
llama_batch batch_view = {
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
if ( llama_decode ( ctx , batch_view ) )
{
LOG_TEE ( " %s : failed to eval \n " , __func__ ) ;
return false ;
}
}
// process image with llm
for ( int i = 0 ; i < img . image_tokens ; i + = n_batch )
{
int n_eval = img . image_tokens - i ;
if ( n_eval > n_batch )
{
n_eval = n_batch ;
}
const int n_embd = llama_n_embd ( model ) ;
llama_batch batch_img = { n_eval , nullptr , ( img . image_embedding + i * n_embd ) , nullptr , nullptr , nullptr , nullptr , slot . n_past , 1 , 0 , } ;
if ( llama_decode ( ctx , batch_img ) )
{
LOG_TEE ( " %s : failed to eval image \n " , __func__ ) ;
return false ;
}
slot . n_past + = n_eval ;
}
image_idx + + ;
llama_batch_clear ( batch ) ;
// append prefix of next image
const auto json_prompt = ( image_idx > = ( int ) slot . images . size ( ) ) ?
slot . params . input_suffix : // no more images, then process suffix prompt
( json ) ( slot . images [ image_idx ] . prefix_prompt ) ;
std : : vector < llama_token > append_tokens = tokenize ( json_prompt , false ) ; // has next image
for ( int i = 0 ; i < ( int ) append_tokens . size ( ) ; + + i )
{
2024-02-01 18:21:52 +00:00
llama_batch_add ( batch , append_tokens [ i ] , system_tokens . size ( ) + slot . n_past , { slot . id } , true ) ;
2023-11-11 12:14:59 +00:00
slot . n_past + = 1 ;
}
}
return true ;
}
void request_cancel ( int task_id )
{
task_server task ;
2024-01-21 08:56:14 +00:00
task . type = TASK_TYPE_CANCEL ;
2023-11-11 12:14:59 +00:00
task . target_id = task_id ;
2024-02-01 18:21:52 +00:00
queue_tasks . post ( task ) ;
2023-11-11 12:14:59 +00:00
}
2024-02-01 18:21:52 +00:00
void split_multiprompt_task ( int multitask_id , task_server & multiprompt_task )
2023-12-15 07:26:48 +00:00
{
int prompt_count = multiprompt_task . data . at ( " prompt " ) . size ( ) ;
2024-02-21 10:35:44 +00:00
if ( prompt_count < = 1 ) {
send_error ( multiprompt_task , " error while handling multiple prompts " ) ;
return ;
}
2023-12-15 07:26:48 +00:00
2024-02-01 18:21:52 +00:00
// generate all the ID for subtask
2023-12-15 07:26:48 +00:00
std : : vector < int > subtask_ids ( prompt_count ) ;
for ( int i = 0 ; i < prompt_count ; i + + )
2024-02-01 18:21:52 +00:00
{
subtask_ids [ i ] = queue_tasks . get_new_id ( ) ;
}
// queue up the multitask so we can track its subtask progression
queue_tasks . add_multitask ( multitask_id , subtask_ids ) ;
// add subtasks
for ( int i = 0 ; i < prompt_count ; i + + )
2023-12-15 07:26:48 +00:00
{
json subtask_data = multiprompt_task . data ;
subtask_data [ " prompt " ] = subtask_data [ " prompt " ] [ i ] ;
// subtasks inherit everything else (infill mode, embedding mode, etc.)
2024-02-01 18:21:52 +00:00
request_completion ( subtask_ids [ i ] , subtask_data , multiprompt_task . infill_mode , multiprompt_task . embedding_mode , multitask_id ) ;
2023-12-15 07:26:48 +00:00
}
}
2024-02-01 18:21:52 +00:00
void process_single_task ( task_server & task )
2023-11-11 12:14:59 +00:00
{
2024-02-01 18:21:52 +00:00
switch ( task . type )
2023-11-11 12:14:59 +00:00
{
2024-02-01 18:21:52 +00:00
case TASK_TYPE_COMPLETION : {
llama_client_slot * slot = get_slot ( json_value ( task . data , " slot_id " , - 1 ) ) ;
if ( slot = = nullptr )
{
// if no slot is available, we defer this task for processing later
2024-02-26 12:18:44 +00:00
LOG_VERBOSE ( " no slot is available " , { { " task_id " , task . id } } ) ;
2024-02-01 18:21:52 +00:00
queue_tasks . defer ( task ) ;
break ;
}
if ( task . data . contains ( " system_prompt " ) )
{
if ( ! all_slots_are_idle ) {
send_error ( task , " system prompt can only be updated when all slots are idle " ) ;
2024-01-21 08:56:14 +00:00
break ;
2023-11-11 12:14:59 +00:00
}
2024-02-01 18:21:52 +00:00
process_system_prompt_data ( task . data [ " system_prompt " ] ) ;
2023-11-11 12:14:59 +00:00
2024-02-01 18:21:52 +00:00
// reset cache_tokens for all slots
for ( llama_client_slot & slot : slots )
2023-11-11 12:14:59 +00:00
{
2024-02-01 18:21:52 +00:00
slot . cache_tokens . clear ( ) ;
slot . n_past = 0 ;
slot . n_past_se = 0 ;
2023-11-11 12:14:59 +00:00
}
2024-02-01 18:21:52 +00:00
}
2023-11-11 12:14:59 +00:00
2024-02-01 18:21:52 +00:00
slot - > reset ( ) ;
2023-11-11 12:14:59 +00:00
2024-02-01 18:21:52 +00:00
slot - > infill = task . infill_mode ;
slot - > embedding = task . embedding_mode ;
slot - > task_id = task . id ;
slot - > multitask_id = task . multitask_id ;
2023-11-11 12:14:59 +00:00
2024-02-01 18:21:52 +00:00
if ( ! launch_slot_with_data ( slot , task . data ) )
{
// send error result
send_error ( task , " internal_error " ) ;
break ;
}
} break ;
case TASK_TYPE_CANCEL : { // release slot linked with the task id
for ( auto & slot : slots )
{
if ( slot . task_id = = task . target_id )
2023-11-11 12:14:59 +00:00
{
2024-02-01 18:21:52 +00:00
slot . release ( ) ;
2023-11-11 12:14:59 +00:00
break ;
}
2024-02-01 18:21:52 +00:00
}
} break ;
case TASK_TYPE_NEXT_RESPONSE : {
// do nothing
} break ;
2023-11-11 12:14:59 +00:00
}
2024-02-01 18:21:52 +00:00
}
2023-12-15 07:26:48 +00:00
2024-02-01 18:21:52 +00:00
void on_finish_multitask ( task_multi & multitask )
{
// all subtasks done == multitask is done
task_result result ;
result . id = multitask . id ;
result . stop = true ;
result . error = false ;
2024-01-21 08:56:14 +00:00
2024-02-01 18:21:52 +00:00
// collect json results into one json result
std : : vector < json > result_jsons ;
for ( auto & subres : multitask . results )
2023-12-15 07:26:48 +00:00
{
2024-02-01 18:21:52 +00:00
result_jsons . push_back ( subres . result_json ) ;
result . error = result . error & & subres . error ;
2023-12-15 07:26:48 +00:00
}
2024-02-01 18:21:52 +00:00
result . result_json = json { { " results " , result_jsons } } ;
queue_results . send ( result ) ;
2023-11-11 12:14:59 +00:00
}
bool update_slots ( ) {
2024-01-21 08:56:14 +00:00
if ( system_need_update )
2023-11-11 12:14:59 +00:00
{
2024-02-26 12:18:44 +00:00
LOG_INFO ( " updating system prompt " , { } ) ;
2023-11-11 12:14:59 +00:00
update_system_prompt ( ) ;
}
llama_batch_clear ( batch ) ;
if ( all_slots_are_idle )
{
if ( system_prompt . empty ( ) & & clean_kv_cache )
{
2024-02-26 12:18:44 +00:00
LOG_INFO ( " all slots are idle and system prompt is empty, clear the KV cache " , { } ) ;
2023-11-11 12:14:59 +00:00
kv_cache_clear ( ) ;
}
2024-02-01 18:21:52 +00:00
return true ;
2023-11-11 12:14:59 +00:00
}
2024-02-26 12:18:44 +00:00
LOG_VERBOSE ( " posting NEXT_RESPONSE " , { } ) ;
2024-02-01 18:21:52 +00:00
task_server task ;
task . type = TASK_TYPE_NEXT_RESPONSE ;
task . target_id = - 1 ;
queue_tasks . post ( task ) ;
2023-11-11 12:14:59 +00:00
for ( llama_client_slot & slot : slots )
{
2024-02-01 18:21:52 +00:00
if ( slot . ga_n = = 1 )
2023-11-11 12:14:59 +00:00
{
2024-02-01 18:21:52 +00:00
if ( slot . is_processing ( ) & & system_tokens . size ( ) + slot . cache_tokens . size ( ) > = ( size_t ) slot . n_ctx )
{
2024-02-13 20:17:21 +00:00
// START LOCALAI changes
// Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969)
// See: https://github.com/mudler/LocalAI/issues/1333
// Context is exhausted, release the slot
slot . release ( ) ;
send_final_response ( slot ) ;
slot . cache_tokens . clear ( ) ;
slot . n_past = 0 ;
slot . truncated = false ;
slot . has_next_token = true ;
LOG_TEE ( " Context exhausted. Slot %d released (%d tokens in cache) \n " , slot . id , ( int ) slot . cache_tokens . size ( ) ) ;
continue ;
// END LOCALAI changes
2024-02-01 18:21:52 +00:00
}
2023-11-11 12:14:59 +00:00
}
}
// decode any currently ongoing sequences
2024-02-26 12:18:44 +00:00
LOG_VERBOSE ( " decoding ongoing sequences " , { } ) ;
2023-11-11 12:14:59 +00:00
for ( auto & slot : slots )
{
// release the slot
if ( slot . command = = RELEASE )
{
slot . state = IDLE ;
slot . command = NONE ;
slot . t_last_used = ggml_time_us ( ) ;
2024-02-26 12:18:44 +00:00
LOG_INFO ( " slot released " , {
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " n_ctx " , n_ctx } ,
{ " n_past " , slot . n_past } ,
{ " n_system_tokens " , system_tokens . size ( ) } ,
{ " n_cache_tokens " , slot . cache_tokens . size ( ) } ,
{ " truncated " , slot . truncated }
} ) ;
2024-02-01 18:21:52 +00:00
queue_tasks . notify_slot_changed ( ) ;
2023-11-11 12:14:59 +00:00
continue ;
}
if ( slot . state = = IDLE )
{
continue ;
}
slot . i_batch = batch . n_tokens ;
2024-02-01 18:21:52 +00:00
const int32_t slot_npast = slot . n_past_se > 0 ? slot . n_past_se : slot . n_past ;
2023-11-11 12:14:59 +00:00
2024-02-01 18:21:52 +00:00
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add ( batch , slot . sampled , system_tokens . size ( ) + slot_npast , { slot . id } , true ) ;
2023-11-11 12:14:59 +00:00
slot . n_past + = 1 ;
}
// process in chunks of params.n_batch
int32_t n_batch = params . n_batch ;
// assign workload to the slots
if ( params . cont_batching | | batch . n_tokens = = 0 )
{
for ( auto & slot : slots )
{
const bool has_prompt = slot . prompt . is_array ( ) | | ( slot . prompt . is_string ( ) & & ! slot . prompt . get < std : : string > ( ) . empty ( ) ) | | ! slot . images . empty ( ) ;
// empty prompt passed -> release the slot and send empty response
2024-01-21 08:56:14 +00:00
// note: infill mode allows empty prompt
if ( slot . state = = IDLE & & slot . command = = LOAD_PROMPT & & ! has_prompt & & ! slot . infill )
2023-11-11 12:14:59 +00:00
{
slot . release ( ) ;
slot . print_timings ( ) ;
send_final_response ( slot ) ;
continue ;
}
// need process the prompt
if ( slot . state = = IDLE & & slot . command = = LOAD_PROMPT )
{
slot . state = PROCESSING ;
slot . command = NONE ;
std : : vector < llama_token > prompt_tokens ;
slot . t_start_process_prompt = ggml_time_us ( ) ;
slot . t_start_genereration = 0 ;
if ( slot . infill )
{
bool suff_rm_leading_spc = true ;
if ( params . input_suffix . find_first_of ( ' ' ) = = 0 & & params . input_suffix . size ( ) > 1 )
{
params . input_suffix . erase ( 0 , 1 ) ;
suff_rm_leading_spc = false ;
}
auto prefix_tokens = tokenize ( slot . params . input_prefix , false ) ;
auto suffix_tokens = tokenize ( slot . params . input_suffix , false ) ;
const int space_token = 29871 ; // TODO: this should not be hardcoded
if ( suff_rm_leading_spc & & ! suffix_tokens . empty ( ) & & suffix_tokens [ 0 ] = = space_token ) {
suffix_tokens . erase ( suffix_tokens . begin ( ) ) ;
}
prefix_tokens . insert ( prefix_tokens . begin ( ) , llama_token_prefix ( model ) ) ;
prefix_tokens . insert ( prefix_tokens . begin ( ) , llama_token_bos ( model ) ) ; // always add BOS
2024-02-01 18:21:52 +00:00
prefix_tokens . insert ( prefix_tokens . end ( ) , llama_token_suffix ( model ) ) ;
prefix_tokens . insert ( prefix_tokens . end ( ) , suffix_tokens . begin ( ) , suffix_tokens . end ( ) ) ;
2023-11-11 12:14:59 +00:00
prefix_tokens . push_back ( llama_token_middle ( model ) ) ;
prompt_tokens = prefix_tokens ;
}
else
{
2023-12-15 07:26:48 +00:00
prompt_tokens = tokenize ( slot . prompt , system_prompt . empty ( ) & & add_bos_token ) ; // add BOS if there isn't system prompt
2023-11-11 12:14:59 +00:00
}
slot . num_prompt_tokens = prompt_tokens . size ( ) ;
2023-12-15 07:26:48 +00:00
if ( slot . params . n_keep < 0 )
{
slot . params . n_keep = slot . num_prompt_tokens ;
}
slot . params . n_keep = std : : min ( slot . n_ctx - 4 , slot . params . n_keep ) ;
// if input prompt is too big, truncate it
if ( slot . num_prompt_tokens > = slot . n_ctx )
{
const int n_left = slot . n_ctx - slot . params . n_keep ;
const int n_block_size = n_left / 2 ;
const int erased_blocks = ( slot . num_prompt_tokens - slot . params . n_keep - n_block_size ) / n_block_size ;
std : : vector < llama_token > new_tokens ( prompt_tokens . begin ( ) , prompt_tokens . begin ( ) + slot . params . n_keep ) ;
new_tokens . insert ( new_tokens . end ( ) , prompt_tokens . begin ( ) + slot . params . n_keep + erased_blocks * n_block_size , prompt_tokens . end ( ) ) ;
LOG_VERBOSE ( " input truncated " , {
{ " n_ctx " , slot . n_ctx } ,
{ " n_keep " , slot . params . n_keep } ,
{ " n_left " , n_left } ,
{ " new_tokens " , tokens_to_str ( ctx , new_tokens . cbegin ( ) , new_tokens . cend ( ) ) } ,
} ) ;
slot . truncated = true ;
prompt_tokens = new_tokens ;
slot . num_prompt_tokens = prompt_tokens . size ( ) ;
GGML_ASSERT ( slot . num_prompt_tokens < slot . n_ctx ) ;
}
2023-11-11 12:14:59 +00:00
if ( ! slot . params . cache_prompt )
{
llama_sampling_reset ( slot . ctx_sampling ) ;
slot . n_past = 0 ;
2024-02-01 18:21:52 +00:00
slot . n_past_se = 0 ;
slot . ga_i = 0 ;
2023-11-11 12:14:59 +00:00
slot . num_prompt_tokens_processed = slot . num_prompt_tokens ;
}
else
{
// push the prompt into the sampling context (do not apply grammar)
for ( auto & token : prompt_tokens )
{
llama_sampling_accept ( slot . ctx_sampling , ctx , token , false ) ;
}
slot . n_past = common_part ( slot . cache_tokens , prompt_tokens ) ;
2024-02-26 12:18:44 +00:00
// the last token of the cache is not in the KV cache until the next call to llama_decode
// (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
if ( slot . n_past > 0 & & slot . n_past = = ( int32_t ) slot . cache_tokens . size ( ) )
{
slot . n_past - = 1 ;
}
2023-11-11 12:14:59 +00:00
slot . num_prompt_tokens_processed = slot . num_prompt_tokens - slot . n_past ;
2024-02-01 18:21:52 +00:00
if ( slot . ga_n ! = 1 )
{
int ga_i = 0 ;
int32_t ga_n = slot . ga_n ;
int32_t ga_w = slot . ga_w ;
int32_t slot_npast = 0 ;
for ( int k = 0 ; k < slot . n_past ; + + k )
{
while ( slot_npast > = ga_i + ga_w ) {
const int bd = ( ga_w / ga_n ) * ( ga_n - 1 ) ;
slot_npast - = bd ;
ga_i + = ga_w / ga_n ;
}
slot_npast + + ;
}
slot . n_past_se = slot_npast ;
slot . ga_i = ga_i ;
}
2024-02-26 12:18:44 +00:00
LOG_INFO ( " slot progression " , {
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " n_past " , slot . n_past } ,
{ " num_prompt_tokens_processed " , slot . num_prompt_tokens_processed }
} ) ;
2023-11-11 12:14:59 +00:00
}
slot . cache_tokens = prompt_tokens ;
2024-01-21 08:56:14 +00:00
if ( slot . n_past = = slot . num_prompt_tokens & & slot . n_past > 0 )
2023-11-11 12:14:59 +00:00
{
// we have to evaluate at least 1 token to generate logits.
2024-02-26 12:18:44 +00:00
LOG_INFO ( " we have to evaluate at least 1 token to generate logits " , {
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id }
} ) ;
2023-11-11 12:14:59 +00:00
slot . n_past - - ;
2024-02-01 18:21:52 +00:00
if ( slot . ga_i > 0 )
{
slot . n_past_se - - ;
}
2023-11-11 12:14:59 +00:00
}
2024-02-26 12:18:44 +00:00
int p0 = ( int ) system_tokens . size ( ) + slot . n_past ;
LOG_INFO ( " kv cache rm [p0, end) " , {
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " p0 " , p0 }
} ) ;
llama_kv_cache_seq_rm ( ctx , slot . id , p0 , - 1 ) ;
2024-02-21 10:35:44 +00:00
2023-11-11 12:14:59 +00:00
LOG_VERBOSE ( " prompt ingested " , {
2024-02-01 18:21:52 +00:00
{ " n_past " , slot . n_past } ,
{ " cached " , tokens_to_str ( ctx , slot . cache_tokens . cbegin ( ) , slot . cache_tokens . cbegin ( ) + slot . n_past ) } ,
2023-11-11 12:14:59 +00:00
{ " to_eval " , tokens_to_str ( ctx , slot . cache_tokens . cbegin ( ) + slot . n_past , slot . cache_tokens . cend ( ) ) } ,
} ) ;
const bool has_images = process_images ( slot ) ;
// process the prefix of first image
2023-12-15 07:26:48 +00:00
std : : vector < llama_token > prefix_tokens = has_images ? tokenize ( slot . images [ 0 ] . prefix_prompt , add_bos_token ) : prompt_tokens ;
2024-02-01 18:21:52 +00:00
int32_t slot_npast = slot . n_past_se > 0 ? slot . n_past_se : slot . n_past ;
int32_t ga_i = slot . ga_i ;
int32_t ga_n = slot . ga_n ;
int32_t ga_w = slot . ga_w ;
2023-11-11 12:14:59 +00:00
for ( ; slot . n_past < ( int ) prefix_tokens . size ( ) ; + + slot . n_past )
{
2024-02-01 18:21:52 +00:00
if ( slot . ga_n ! = 1 )
{
while ( slot_npast > = ga_i + ga_w ) {
const int bd = ( ga_w / ga_n ) * ( ga_n - 1 ) ;
slot_npast - = bd ;
ga_i + = ga_w / ga_n ;
}
}
llama_batch_add ( batch , prefix_tokens [ slot . n_past ] , system_tokens . size ( ) + slot_npast , { slot . id } , false ) ;
slot_npast + + ;
2023-11-11 12:14:59 +00:00
}
if ( has_images & & ! ingest_images ( slot , n_batch ) )
{
2024-02-26 12:18:44 +00:00
LOG_ERROR ( " failed processing images " , {
" slot_id " , slot . id ,
" task_id " , slot . task_id ,
} ) ;
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
2023-11-11 12:14:59 +00:00
return false ;
}
// extract the logits only for the last token
if ( batch . n_tokens > 0 )
{
batch . logits [ batch . n_tokens - 1 ] = true ;
}
slot . n_decoded = 0 ;
slot . i_batch = batch . n_tokens - 1 ;
}
}
}
if ( batch . n_tokens = = 0 )
{
all_slots_are_idle = true ;
return true ;
}
for ( int32_t i = 0 ; i < ( int32_t ) batch . n_tokens ; i + = n_batch )
{
const int32_t n_tokens = std : : min ( n_batch , ( int32_t ) ( batch . n_tokens - i ) ) ;
2024-02-01 18:21:52 +00:00
for ( auto & slot : slots )
{
if ( slot . ga_n ! = 1 )
{
// context extension via Self-Extend
while ( slot . n_past_se > = slot . ga_i + slot . ga_w )
{
const int ib = ( slot . ga_n * slot . ga_i ) / slot . ga_w ;
const int bd = ( slot . ga_w / slot . ga_n ) * ( slot . ga_n - 1 ) ;
const int dd = ( slot . ga_w / slot . ga_n ) - ib * bd - slot . ga_w ;
LOG_TEE ( " \n " ) ;
LOG_TEE ( " shift: [%6d, %6d] + %6d -> [%6d, %6d] \n " , slot . ga_i , slot . n_past_se , ib * bd , slot . ga_i + ib * bd , slot . n_past_se + ib * bd ) ;
LOG_TEE ( " div: [%6d, %6d] / %6d -> [%6d, %6d] \n " , slot . ga_i + ib * bd , slot . ga_i + ib * bd + slot . ga_w , slot . ga_n , ( slot . ga_i + ib * bd ) / slot . ga_n , ( slot . ga_i + ib * bd + slot . ga_w ) / slot . ga_n ) ;
LOG_TEE ( " shift: [%6d, %6d] + %6d -> [%6d, %6d] \n " , slot . ga_i + ib * bd + slot . ga_w , slot . n_past_se + ib * bd , dd , slot . ga_i + ib * bd + slot . ga_w + dd , slot . n_past_se + ib * bd + dd ) ;
2024-02-26 12:18:44 +00:00
llama_kv_cache_seq_add ( ctx , slot . id , slot . ga_i , slot . n_past_se , ib * bd ) ;
2024-02-01 18:21:52 +00:00
llama_kv_cache_seq_div ( ctx , slot . id , slot . ga_i + ib * bd , slot . ga_i + ib * bd + slot . ga_w , slot . ga_n ) ;
2024-02-26 12:18:44 +00:00
llama_kv_cache_seq_add ( ctx , slot . id , slot . ga_i + ib * bd + slot . ga_w , slot . n_past_se + ib * bd , dd ) ;
2024-02-01 18:21:52 +00:00
slot . n_past_se - = bd ;
slot . ga_i + = slot . ga_w / slot . ga_n ;
LOG_TEE ( " \n n_past_old = %d, n_past = %d, ga_i = %d \n \n " , slot . n_past_se + bd , slot . n_past_se , slot . ga_i ) ;
}
slot . n_past_se + = n_tokens ;
}
}
2023-11-11 12:14:59 +00:00
llama_batch batch_view =
{
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
const int ret = llama_decode ( ctx , batch_view ) ;
2024-02-01 18:21:52 +00:00
2023-11-11 12:14:59 +00:00
if ( ret ! = 0 )
{
if ( n_batch = = 1 | | ret < 0 )
{
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE ( " %s : failed to decode the batch, n_batch = %d, ret = %d \n " , __func__ , n_batch , ret ) ;
return false ;
}
LOG_TEE ( " %s : failed to find free space in the KV cache, retrying with smaller n_batch = %d \n " , __func__ , n_batch / 2 ) ;
// retry with half the batch size to try to find a free slot in the KV cache
n_batch / = 2 ;
i - = n_batch ;
continue ;
}
for ( auto & slot : slots )
{
if ( slot . i_batch < ( int ) i | | slot . i_batch > = ( int ) ( i + n_tokens ) )
{
continue ;
}
// prompt evaluated for embedding
if ( slot . embedding )
{
send_embedding ( slot ) ;
slot . release ( ) ;
slot . i_batch = - 1 ;
2024-02-26 12:18:44 +00:00
continue ;
2023-11-11 12:14:59 +00:00
}
completion_token_output result ;
const llama_token id = llama_sampling_sample ( slot . ctx_sampling , ctx , NULL , slot . i_batch - i ) ;
llama_sampling_accept ( slot . ctx_sampling , ctx , id , true ) ;
2024-01-21 08:56:14 +00:00
slot . n_decoded + = 1 ;
2023-11-11 12:14:59 +00:00
if ( slot . n_decoded = = 1 )
{
slot . t_start_genereration = ggml_time_us ( ) ;
slot . t_prompt_processing = ( slot . t_start_genereration - slot . t_start_process_prompt ) / 1e3 ;
2024-02-26 12:18:44 +00:00
metrics . on_prompt_eval ( slot ) ;
2023-11-11 12:14:59 +00:00
}
llama_token_data_array cur_p = { slot . ctx_sampling - > cur . data ( ) , slot . ctx_sampling - > cur . size ( ) , false } ;
result . tok = id ;
const int32_t n_probs = slot . sparams . n_probs ;
if ( slot . sparams . temp < = 0 & & n_probs > 0 )
{
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax ( ctx , & cur_p ) ;
}
for ( size_t i = 0 ; i < std : : min ( cur_p . size , ( size_t ) n_probs ) ; + + i )
{
result . probs . push_back ( { cur_p . data [ i ] . id , cur_p . data [ i ] . p } ) ;
}
if ( ! process_token ( result , slot ) )
{
slot . release ( ) ;
slot . print_timings ( ) ;
send_final_response ( slot ) ;
2024-02-26 12:18:44 +00:00
metrics . on_prediction ( slot ) ;
2023-11-11 12:14:59 +00:00
}
slot . i_batch = - 1 ;
}
2023-10-16 19:46:29 +00:00
}
2024-02-26 12:18:44 +00:00
LOG_VERBOSE ( " slots updated " , { } ) ;
2023-11-11 12:14:59 +00:00
return true ;
2023-10-16 19:46:29 +00:00
}
2023-12-15 07:26:48 +00:00
2024-02-01 18:21:52 +00:00
void run_on_all_tasks_finished ( ) {
update_slots ( ) ;
2023-12-15 07:26:48 +00:00
}
2024-02-01 18:21:52 +00:00
} ;
2023-12-15 07:26:48 +00:00
/* llama.cpp completion api semantics */
2023-11-11 12:14:59 +00:00
static json format_partial_response (
llama_server_context & llama , llama_client_slot * slot , const std : : string & content , const std : : vector < completion_token_output > & probs
) {
json res = json
{
{ " content " , content } ,
{ " stop " , false } ,
{ " slot_id " , slot - > id } ,
{ " multimodal " , llama . multimodal }
} ;
if ( slot - > sparams . n_probs > 0 )
{
res [ " completion_probabilities " ] = probs_vector_to_json ( llama . ctx , probs ) ;
}
return res ;
}
struct token_translator
{
llama_context * ctx ;
std : : string operator ( ) ( llama_token tok ) const { return llama_token_to_piece ( ctx , tok ) ; }
std : : string operator ( ) ( const completion_token_output & cto ) const { return ( * this ) ( cto . tok ) ; }
} ;
static void append_to_generated_text_from_generated_token_probs ( llama_server_context & llama , llama_client_slot * slot )
{
auto & gtps = slot - > generated_token_probs ;
auto translator = token_translator { llama . ctx } ;
auto add_strlen = [ = ] ( size_t sum , const completion_token_output & cto ) { return sum + translator ( cto ) . size ( ) ; } ;
const size_t len = std : : accumulate ( gtps . begin ( ) , gtps . end ( ) , size_t ( 0 ) , add_strlen ) ;
if ( slot - > generated_text . capacity ( ) < slot - > generated_text . size ( ) + len )
{
slot - > generated_text . reserve ( slot - > generated_text . size ( ) + len ) ;
}
for ( const completion_token_output & cto : gtps )
{
slot - > generated_text + = translator ( cto ) ;
}
}
2024-02-21 16:23:38 +00:00
std : : function < void ( int ) > shutdown_handler ;
inline void signal_handler ( int signal ) { shutdown_handler ( signal ) ; }
2023-11-11 12:14:59 +00:00
/////////////////////////////////
////////////////////////////////
//////// LOCALAI code starts below here
/////////////////////////////////
////////////////////////////////
bool loaded_model ; // TODO: add a mutex for this, but happens only once loading the model
// The class has a llama instance that is shared across all RPCs
llama_server_context llama ;
static void start_llama_server ( ) {
// Wait for model to be loaded first
while ( ! loaded_model ) {
std : : this_thread : : sleep_for ( std : : chrono : : milliseconds ( 100 ) ) ;
}
2024-02-01 18:21:52 +00:00
llama . queue_tasks . on_new_task ( std : : bind (
& llama_server_context : : process_single_task , & llama , std : : placeholders : : _1 ) ) ;
llama . queue_tasks . on_finish_multitask ( std : : bind (
& llama_server_context : : on_finish_multitask , & llama , std : : placeholders : : _1 ) ) ;
llama . queue_tasks . on_all_tasks_finished ( std : : bind (
& llama_server_context : : run_on_all_tasks_finished , & llama ) ) ;
llama . queue_results . on_multitask_update ( std : : bind (
& llama_server_queue : : update_multitask ,
& llama . queue_tasks ,
std : : placeholders : : _1 ,
std : : placeholders : : _2 ,
std : : placeholders : : _3
) ) ;
llama . queue_tasks . start_loop ( ) ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
json parse_options ( bool streaming , const backend : : PredictOptions * predict , llama_server_context & llama )
{
// This is for example a slot data from the json data
// slot->params.stream = json_value(data, "stream", false);
// slot->params.cache_prompt = json_value(data, "cache_prompt", false);
// slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
// slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
// slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
// slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
// slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
// slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
// slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
// slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
// slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
// slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
// slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
// slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
// slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
// slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
// slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
// slot->params.seed = json_value(data, "seed", default_params.seed);
// slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
// slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
// Create now a json data from the prediction options instead
//
json data ;
data [ " stream " ] = streaming ;
data [ " cache_prompt " ] = predict - > promptcacheall ( ) ;
data [ " n_predict " ] = predict - > tokens ( ) = = 0 ? - 1 : predict - > tokens ( ) ;
data [ " top_k " ] = predict - > topk ( ) ;
data [ " top_p " ] = predict - > topp ( ) ;
data [ " tfs_z " ] = predict - > tailfreesamplingz ( ) ;
data [ " typical_p " ] = predict - > typicalp ( ) ;
data [ " temperature " ] = predict - > temperature ( ) ;
data [ " repeat_last_n " ] = predict - > repeat ( ) ;
data [ " repeat_penalty " ] = predict - > penalty ( ) ;
data [ " frequency_penalty " ] = predict - > frequencypenalty ( ) ;
data [ " presence_penalty " ] = predict - > presencepenalty ( ) ;
data [ " mirostat " ] = predict - > mirostat ( ) ;
data [ " mirostat_tau " ] = predict - > mirostattau ( ) ;
data [ " mirostat_eta " ] = predict - > mirostateta ( ) ;
data [ " penalize_nl " ] = predict - > penalizenl ( ) ;
data [ " n_keep " ] = predict - > nkeep ( ) ;
data [ " seed " ] = predict - > seed ( ) ;
data [ " grammar " ] = predict - > grammar ( ) ;
data [ " prompt " ] = predict - > prompt ( ) ;
data [ " ignore_eos " ] = predict - > ignoreeos ( ) ;
2024-07-15 20:54:16 +00:00
data [ " embeddings " ] = predict - > embeddings ( ) ;
2023-11-11 12:14:59 +00:00
// for each image in the request, add the image data
//
for ( int i = 0 ; i < predict - > images_size ( ) ; i + + ) {
data [ " image_data " ] . push_back ( json
{
{ " id " , i } ,
{ " data " , predict - > images ( i ) } ,
} ) ;
}
data [ " stop " ] = predict - > stopprompts ( ) ;
// data["n_probs"] = predict->nprobs();
//TODO: images,
return data ;
}
2023-10-16 19:46:29 +00:00
2023-11-11 12:14:59 +00:00
// static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama)
// {
// // https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L673
// gpt_params default_params;
// llama.stream = streaming;
// llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
// llama.params.sparams.top_k = predict->topk();
// llama.params.sparams.top_p = predict->topp();
// llama.params.sparams.tfs_z = predict->tailfreesamplingz();
// llama.params.sparams.typical_p = predict->typicalp();
// llama.params.sparams.penalty_last_n = predict->repeat();
// llama.params.sparams.temp = predict->temperature();
// llama.params.sparams.penalty_repeat = predict->penalty();
// llama.params.sparams.penalty_present = predict->presencepenalty();
// llama.params.sparams.penalty_freq = predict->frequencypenalty();
// llama.params.sparams.mirostat = predict->mirostat();
// llama.params.sparams.mirostat_tau = predict->mirostattau();
// llama.params.sparams.mirostat_eta = predict->mirostateta();
// llama.params.sparams.penalize_nl = predict->penalizenl();
// llama.params.n_keep = predict->nkeep();
// llama.params.seed = predict->seed();
// llama.params.sparams.grammar = predict->grammar();
// // llama.params.n_probs = predict->
// llama.params.prompt = predict->prompt();
// llama.params.sparams.logit_bias.clear();
// if (predict->ignoreeos())
// {
// llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY;
// }
// // const auto &logit_bias = body.find("logit_bias");
// // if (logit_bias != body.end() && logit_bias->is_array())
// // {
// // const int n_vocab = llama_n_vocab(llama.model);
// // for (const auto &el : *logit_bias)
// // {
// // if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
// // {
// // llama_token tok = el[0].get<llama_token>();
// // if (tok >= 0 && tok < n_vocab)
// // {
// // if (el[1].is_number())
// // {
// // llama.params.logit_bias[tok] = el[1].get<float>();
// // }
// // else if (el[1].is_boolean() && !el[1].get<bool>())
// // {
// // llama.params.logit_bias[tok] = -INFINITY;
// // }
// // }
// // }
// // }
// // }
// llama.params.antiprompt.clear();
// for (const std::string& stopPrompt : predict->stopprompts()) {
// if (!stopPrompt.empty())
// {
// llama.params.antiprompt.push_back(stopPrompt);
// }
// }
// }
2023-10-16 19:46:29 +00:00
static void params_parse ( const backend : : ModelOptions * request ,
gpt_params & params ) {
2023-11-11 12:14:59 +00:00
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
2023-10-16 19:46:29 +00:00
params . model = request - > modelfile ( ) ;
2023-11-11 12:14:59 +00:00
if ( ! request - > mmproj ( ) . empty ( ) ) {
// get the directory of modelfile
std : : string model_dir = params . model . substr ( 0 , params . model . find_last_of ( " / \\ " ) ) ;
params . mmproj = model_dir + " / " + request - > mmproj ( ) ;
}
2023-10-16 19:46:29 +00:00
// params.model_alias ??
params . model_alias = request - > modelfile ( ) ;
params . n_ctx = request - > contextsize ( ) ;
2023-12-15 07:26:48 +00:00
//params.memory_f16 = request->f16memory();
2023-10-16 19:46:29 +00:00
params . n_threads = request - > threads ( ) ;
params . n_gpu_layers = request - > ngpulayers ( ) ;
params . n_batch = request - > nbatch ( ) ;
2023-11-11 12:14:59 +00:00
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
//params.n_parallel = 1;
const char * env_parallel = std : : getenv ( " LLAMACPP_PARALLEL " ) ;
if ( env_parallel ! = NULL ) {
params . n_parallel = std : : stoi ( env_parallel ) ;
2024-01-21 13:59:48 +00:00
params . cont_batching = true ;
2023-11-11 12:14:59 +00:00
} else {
params . n_parallel = 1 ;
}
2024-05-14 23:17:02 +00:00
const char * llama_grpc_servers = std : : getenv ( " LLAMACPP_GRPC_SERVERS " ) ;
if ( llama_grpc_servers ! = NULL ) {
params . rpc_servers = std : : string ( llama_grpc_servers ) ;
}
2023-11-11 12:14:59 +00:00
// TODO: Add yarn
2023-10-16 19:46:29 +00:00
if ( ! request - > tensorsplit ( ) . empty ( ) ) {
std : : string arg_next = request - > tensorsplit ( ) ;
// split string by , and /
const std : : regex regex { R " ([,/]+) " } ;
std : : sregex_token_iterator it { arg_next . begin ( ) , arg_next . end ( ) , regex , - 1 } ;
std : : vector < std : : string > split_arg { it , { } } ;
2024-02-01 18:21:52 +00:00
GGML_ASSERT ( split_arg . size ( ) < = llama_max_devices ( ) ) ;
2023-10-16 19:46:29 +00:00
2024-02-01 18:21:52 +00:00
for ( size_t i_device = 0 ; i_device < llama_max_devices ( ) ; + + i_device ) {
2023-10-16 19:46:29 +00:00
if ( i_device < split_arg . size ( ) ) {
params . tensor_split [ i_device ] = std : : stof ( split_arg [ i_device ] ) ;
}
else {
params . tensor_split [ i_device ] = 0.0f ;
}
}
}
if ( ! request - > maingpu ( ) . empty ( ) ) {
params . main_gpu = std : : stoi ( request - > maingpu ( ) ) ;
}
2023-11-11 17:40:48 +00:00
if ( ! request - > loraadapter ( ) . empty ( ) & & ! request - > lorabase ( ) . empty ( ) ) {
float scale_factor = 1.0f ;
if ( request - > lorascale ( ) ! = 0.0f ) {
scale_factor = request - > lorascale ( ) ;
}
// get the directory of modelfile
std : : string model_dir = params . model . substr ( 0 , params . model . find_last_of ( " / \\ " ) ) ;
params . lora_adapter . push_back ( std : : make_tuple ( model_dir + " / " + request - > loraadapter ( ) , scale_factor ) ) ;
}
2023-10-16 19:46:29 +00:00
params . use_mlock = request - > mlock ( ) ;
params . use_mmap = request - > mmap ( ) ;
2024-05-13 17:07:51 +00:00
params . flash_attn = request - > flashattention ( ) ;
params . no_kv_offload = request - > nokvoffload ( ) ;
2023-10-16 19:46:29 +00:00
params . embedding = request - > embeddings ( ) ;
2023-11-11 17:40:48 +00:00
2024-02-26 12:18:44 +00:00
if ( request - > ropescaling ( ) = = " none " ) { params . rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE ; }
else if ( request - > ropescaling ( ) = = " yarn " ) { params . rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN ; }
else { params . rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR ; }
2023-11-11 17:40:48 +00:00
if ( request - > yarnextfactor ( ) ! = 0.0f ) {
params . yarn_ext_factor = request - > yarnextfactor ( ) ;
}
if ( request - > yarnattnfactor ( ) ! = 0.0f ) {
params . yarn_attn_factor = request - > yarnattnfactor ( ) ;
}
if ( request - > yarnbetafast ( ) ! = 0.0f ) {
params . yarn_beta_fast = request - > yarnbetafast ( ) ;
}
if ( request - > yarnbetaslow ( ) ! = 0.0f ) {
params . yarn_beta_slow = request - > yarnbetaslow ( ) ;
}
if ( request - > ropefreqbase ( ) ! = 0.0f ) {
params . rope_freq_base = request - > ropefreqbase ( ) ;
}
if ( request - > ropefreqscale ( ) ! = 0.0f ) {
params . rope_freq_scale = request - > ropefreqscale ( ) ;
}
2023-10-16 19:46:29 +00:00
}
// GRPC Server start
class BackendServiceImpl final : public backend : : Backend : : Service {
public :
grpc : : Status Health ( ServerContext * context , const backend : : HealthMessage * request , backend : : Reply * reply ) {
// Implement Health RPC
reply - > set_message ( " OK " ) ;
return Status : : OK ;
}
grpc : : Status LoadModel ( ServerContext * context , const backend : : ModelOptions * request , backend : : Result * result ) {
// Implement LoadModel RPC
gpt_params params ;
params_parse ( request , params ) ;
2024-02-21 16:23:38 +00:00
llama_backend_init ( ) ;
llama_numa_init ( params . numa ) ;
2023-10-16 19:46:29 +00:00
// load the model
2023-11-11 12:14:59 +00:00
if ( ! llama . load_model ( params ) )
2023-10-16 19:46:29 +00:00
{
result - > set_message ( " Failed loading model " ) ;
result - > set_success ( false ) ;
return Status : : CANCELLED ;
}
2023-11-11 12:14:59 +00:00
llama . initialize ( ) ;
2023-10-16 19:46:29 +00:00
result - > set_message ( " Loading succeeded " ) ;
result - > set_success ( true ) ;
2023-11-11 12:14:59 +00:00
loaded_model = true ;
2023-10-16 19:46:29 +00:00
return Status : : OK ;
}
grpc : : Status PredictStream ( grpc : : ServerContext * context , const backend : : PredictOptions * request , grpc : : ServerWriter < backend : : Reply > * writer ) override {
2023-11-11 12:14:59 +00:00
json data = parse_options ( true , request , llama ) ;
2024-02-01 18:21:52 +00:00
const int task_id = llama . queue_tasks . get_new_id ( ) ;
llama . queue_results . add_waiting_task_id ( task_id ) ;
llama . request_completion ( task_id , data , false , false , - 1 ) ;
2023-11-11 12:14:59 +00:00
while ( true )
{
2024-02-01 18:21:52 +00:00
task_result result = llama . queue_results . recv ( task_id ) ;
2023-11-11 12:14:59 +00:00
if ( ! result . error ) {
const std : : string str =
" data: " +
result . result_json . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
" \n \n " ;
LOG_VERBOSE ( " data stream " , {
{ " to_send " , str }
} ) ;
2023-10-16 19:46:29 +00:00
backend : : Reply reply ;
2023-11-11 12:14:59 +00:00
// print it
std : : string completion_text = result . result_json . value ( " content " , " " ) ;
reply . set_message ( completion_text ) ;
2024-04-15 17:47:11 +00:00
int32_t tokens_predicted = result . result_json . value ( " tokens_predicted " , 0 ) ;
reply . set_tokens ( tokens_predicted ) ;
int32_t tokens_evaluated = result . result_json . value ( " tokens_evaluated " , 0 ) ;
reply . set_prompt_tokens ( tokens_evaluated ) ;
2023-10-16 19:46:29 +00:00
// Send the reply
writer - > Write ( reply ) ;
2023-11-11 12:14:59 +00:00
if ( result . stop ) {
break ;
}
} else {
break ;
2023-10-16 19:46:29 +00:00
}
}
return grpc : : Status : : OK ;
}
grpc : : Status Predict ( ServerContext * context , const backend : : PredictOptions * request , backend : : Reply * reply ) {
2023-11-11 12:14:59 +00:00
json data = parse_options ( false , request , llama ) ;
2024-02-01 18:21:52 +00:00
const int task_id = llama . queue_tasks . get_new_id ( ) ;
llama . queue_results . add_waiting_task_id ( task_id ) ;
llama . request_completion ( task_id , data , false , false , - 1 ) ;
2023-11-11 12:14:59 +00:00
std : : string completion_text ;
2024-02-01 18:21:52 +00:00
task_result result = llama . queue_results . recv ( task_id ) ;
2023-11-11 12:14:59 +00:00
if ( ! result . error & & result . stop ) {
completion_text = result . result_json . value ( " content " , " " ) ;
2024-04-15 17:47:11 +00:00
int32_t tokens_predicted = result . result_json . value ( " tokens_predicted " , 0 ) ;
int32_t tokens_evaluated = result . result_json . value ( " tokens_evaluated " , 0 ) ;
reply - > set_prompt_tokens ( tokens_evaluated ) ;
reply - > set_tokens ( tokens_predicted ) ;
2023-11-11 12:14:59 +00:00
reply - > set_message ( completion_text ) ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
else
{
return grpc : : Status : : OK ;
2023-10-16 19:46:29 +00:00
}
2023-11-11 12:14:59 +00:00
2023-10-16 19:46:29 +00:00
return grpc : : Status : : OK ;
}
2024-07-15 20:54:16 +00:00
/// https://github.com/ggerganov/llama.cpp/blob/aa2341298924ac89778252015efcb792f2df1e20/examples/server/server.cpp#L2969
grpc : : Status Embedding ( ServerContext * context , const backend : : PredictOptions * request , backend : : EmbeddingResult * embeddingResult ) {
json data = parse_options ( false , request , llama ) ;
const int task_id = llama . queue_tasks . get_new_id ( ) ;
llama . queue_results . add_waiting_task_id ( task_id ) ;
llama . request_completion ( task_id , { { " prompt " , data [ " embeddings " ] } , { " n_predict " , 0 } , { " image_data " , " " } } , false , true , - 1 ) ;
// get the result
task_result result = llama . queue_results . recv ( task_id ) ;
//std::cout << "Embedding result JSON" << result.result_json.dump() << std::endl;
llama . queue_results . remove_waiting_task_id ( task_id ) ;
if ( ! result . error & & result . stop ) {
std : : vector < float > embeddings = result . result_json . value ( " embedding " , std : : vector < float > ( ) ) ;
// loop the vector and set the embeddings results
for ( int i = 0 ; i < embeddings . size ( ) ; i + + ) {
embeddingResult - > add_embeddings ( embeddings [ i ] ) ;
}
}
else
{
return grpc : : Status : : OK ;
}
return grpc : : Status : : OK ;
}
2023-10-16 19:46:29 +00:00
} ;
void RunServer ( const std : : string & server_address ) {
BackendServiceImpl service ;
ServerBuilder builder ;
builder . AddListeningPort ( server_address , grpc : : InsecureServerCredentials ( ) ) ;
builder . RegisterService ( & service ) ;
std : : unique_ptr < Server > server ( builder . BuildAndStart ( ) ) ;
std : : cout < < " Server listening on " < < server_address < < std : : endl ;
server - > Wait ( ) ;
}
int main ( int argc , char * * argv ) {
std : : string server_address ( " localhost:50051 " ) ;
// Define long and short options
struct option long_options [ ] = {
{ " addr " , required_argument , nullptr , ' a ' } ,
{ nullptr , 0 , nullptr , 0 }
} ;
// Parse command-line arguments
int option ;
int option_index = 0 ;
while ( ( option = getopt_long ( argc , argv , " a: " , long_options , & option_index ) ) ! = - 1 ) {
switch ( option ) {
case ' a ' :
server_address = optarg ;
break ;
default :
std : : cerr < < " Usage: " < < argv [ 0 ] < < " [--addr=<address>] or [-a <address>] " < < std : : endl ;
return 1 ;
}
}
2023-11-11 12:14:59 +00:00
// run the HTTP server in a thread - see comment below
std : : thread t ( [ & ] ( )
{
RunServer ( server_address ) ;
return 0 ;
} ) ;
//);
start_llama_server ( ) ;
std : : cout < < " stopping " < < std : : endl ;
t . join ( ) ;
llama_backend_free ( ) ;
2023-10-16 19:46:29 +00:00
return 0 ;
}