2023-09-09 14:46:13 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
import grpc
|
|
|
|
from concurrent import futures
|
|
|
|
import time
|
|
|
|
import backend_pb2
|
|
|
|
import backend_pb2_grpc
|
|
|
|
import argparse
|
|
|
|
import signal
|
|
|
|
import sys
|
|
|
|
import os, glob
|
|
|
|
|
|
|
|
from pathlib import Path
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
|
|
def generate(self,prompt, max_new_tokens):
|
|
|
|
self.generator.end_beam_search()
|
|
|
|
|
|
|
|
# Tokenizing the input
|
|
|
|
ids = self.generator.tokenizer.encode(prompt)
|
|
|
|
|
|
|
|
self.generator.gen_begin_reuse(ids)
|
|
|
|
initial_len = self.generator.sequence[0].shape[0]
|
|
|
|
has_leading_space = False
|
|
|
|
decoded_text = ''
|
|
|
|
for i in range(max_new_tokens):
|
|
|
|
token = self.generator.gen_single_token()
|
|
|
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
|
|
|
has_leading_space = True
|
|
|
|
|
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
|
|
|
if has_leading_space:
|
|
|
|
decoded_text = ' ' + decoded_text
|
|
|
|
|
|
|
|
if token.item() == self.generator.tokenizer.eos_token_id:
|
|
|
|
break
|
|
|
|
return decoded_text
|
|
|
|
def Health(self, request, context):
|
|
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
|
|
try:
|
|
|
|
# https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py
|
|
|
|
self.llm = LLM(model=request.Model)
|
|
|
|
except Exception as err:
|
|
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
|
|
|
|
def Predict(self, request, context):
|
2023-09-19 16:10:23 +00:00
|
|
|
if request.TopP == 0:
|
|
|
|
request.TopP = 0.9
|
|
|
|
|
2023-09-09 14:46:13 +00:00
|
|
|
sampling_params = SamplingParams(temperature=request.Temperature, top_p=request.TopP)
|
|
|
|
outputs = self.llm.generate([request.Prompt], sampling_params)
|
|
|
|
|
|
|
|
generated_text = outputs[0].outputs[0].text
|
|
|
|
# Remove prompt from response if present
|
|
|
|
if request.Prompt in generated_text:
|
|
|
|
generated_text = generated_text.replace(request.Prompt, "")
|
|
|
|
|
|
|
|
return backend_pb2.Result(message=bytes(generated_text, encoding='utf-8'))
|
|
|
|
|
|
|
|
def PredictStream(self, request, context):
|
|
|
|
# Implement PredictStream RPC
|
|
|
|
#for reply in some_data_generator():
|
|
|
|
# yield reply
|
|
|
|
# Not implemented yet
|
|
|
|
return self.Predict(request, context)
|
|
|
|
|
|
|
|
def serve(address):
|
|
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
|
|
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
|
|
server.add_insecure_port(address)
|
|
|
|
server.start()
|
|
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
|
|
|
|
# Define the signal handler function
|
|
|
|
def signal_handler(sig, frame):
|
|
|
|
print("Received termination signal. Shutting down...")
|
|
|
|
server.stop(0)
|
|
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
|
|
|
|
try:
|
|
|
|
while True:
|
|
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
server.stop(0)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
serve(args.addr)
|