mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-04 20:04:09 +00:00
142 lines
5.2 KiB
Python
142 lines
5.2 KiB
Python
|
#!/usr/bin/env python3
|
||
|
import grpc
|
||
|
from concurrent import futures
|
||
|
import time
|
||
|
import backend_pb2
|
||
|
import backend_pb2_grpc
|
||
|
import argparse
|
||
|
import signal
|
||
|
import sys
|
||
|
import os, glob
|
||
|
|
||
|
from pathlib import Path
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch import version as torch_version
|
||
|
from exllama.generator import ExLlamaGenerator
|
||
|
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||
|
from exllama.tokenizer import ExLlamaTokenizer
|
||
|
|
||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||
|
|
||
|
# Implement the BackendServicer class with the service methods
|
||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||
|
def generate(self,prompt, max_new_tokens):
|
||
|
self.generator.end_beam_search()
|
||
|
|
||
|
# Tokenizing the input
|
||
|
ids = self.generator.tokenizer.encode(prompt)
|
||
|
|
||
|
self.generator.gen_begin_reuse(ids)
|
||
|
initial_len = self.generator.sequence[0].shape[0]
|
||
|
has_leading_space = False
|
||
|
decoded_text = ''
|
||
|
for i in range(max_new_tokens):
|
||
|
token = self.generator.gen_single_token()
|
||
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
||
|
has_leading_space = True
|
||
|
|
||
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
||
|
if has_leading_space:
|
||
|
decoded_text = ' ' + decoded_text
|
||
|
|
||
|
if token.item() == self.generator.tokenizer.eos_token_id:
|
||
|
break
|
||
|
return decoded_text
|
||
|
def Health(self, request, context):
|
||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||
|
def LoadModel(self, request, context):
|
||
|
try:
|
||
|
# https://github.com/turboderp/exllama/blob/master/example_cfg.py
|
||
|
model_directory = request.ModelFile
|
||
|
|
||
|
# Locate files we need within that directory
|
||
|
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
|
||
|
model_config_path = os.path.join(model_directory, "config.json")
|
||
|
st_pattern = os.path.join(model_directory, "*.safetensors")
|
||
|
model_path = glob.glob(st_pattern)[0]
|
||
|
|
||
|
# Create config, model, tokenizer and generator
|
||
|
|
||
|
config = ExLlamaConfig(model_config_path) # create config from config.json
|
||
|
config.model_path = model_path # supply path to model weights file
|
||
|
|
||
|
model = ExLlama(config) # create ExLlama instance and load the weights
|
||
|
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
|
||
|
|
||
|
cache = ExLlamaCache(model, batch_size = 2) # create cache for inference
|
||
|
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
|
||
|
|
||
|
self.generator= generator
|
||
|
self.model = model
|
||
|
self.tokenizer = tokenizer
|
||
|
self.cache = cache
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||
|
|
||
|
def Predict(self, request, context):
|
||
|
penalty = 1.15
|
||
|
if request.Penalty != 0.0:
|
||
|
penalty = request.Penalty
|
||
|
self.generator.settings.token_repetition_penalty_max = penalty
|
||
|
self.generator.settings.temperature = request.Temperature
|
||
|
self.generator.settings.top_k = request.TopK
|
||
|
self.generator.settings.top_p = request.TopP
|
||
|
|
||
|
tokens = 512
|
||
|
if request.Tokens != 0:
|
||
|
tokens = request.Tokens
|
||
|
|
||
|
if self.cache.batch_size == 1:
|
||
|
del self.cache
|
||
|
self.cache = ExLlamaCache(self.model, batch_size=2)
|
||
|
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
|
||
|
|
||
|
t = self.generate(request.Prompt, tokens)
|
||
|
|
||
|
# Remove prompt from response if present
|
||
|
if request.Prompt in t:
|
||
|
t = t.replace(request.Prompt, "")
|
||
|
|
||
|
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
|
||
|
|
||
|
def PredictStream(self, request, context):
|
||
|
# Implement PredictStream RPC
|
||
|
#for reply in some_data_generator():
|
||
|
# yield reply
|
||
|
# Not implemented yet
|
||
|
return self.Predict(request, context)
|
||
|
|
||
|
|
||
|
def serve(address):
|
||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||
|
server.add_insecure_port(address)
|
||
|
server.start()
|
||
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
||
|
|
||
|
# Define the signal handler function
|
||
|
def signal_handler(sig, frame):
|
||
|
print("Received termination signal. Shutting down...")
|
||
|
server.stop(0)
|
||
|
sys.exit(0)
|
||
|
|
||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||
|
signal.signal(signal.SIGINT, signal_handler)
|
||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||
|
|
||
|
try:
|
||
|
while True:
|
||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||
|
except KeyboardInterrupt:
|
||
|
server.stop(0)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||
|
parser.add_argument(
|
||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
serve(args.addr)
|